基于python中theano库的线性回归

yipeiwu_com6年前Python基础

theano库是做deep learning重要的一部分,其最吸引人的地方之一是你给出符号化的公式之后,能自动生成导数。本文使用梯度下降的方法,进行数据拟合,现在把代码贴在下方

代码块

import numpy as np 
import theano.tensor as T 
import theano 
import time 

class Linear_Reg(object): 
  def __init__(self,x): 
    self.a = theano.shared(value = np.zeros((1,), dtype=theano.config.floatX),name = 'a') 
    self.b = theano.shared(value = np.zeros((1,), 
dtype=theano.config.floatX),name = 'b') 
    self.result = self.a * x + self.b 
    self.params = [self.a,self.b] 
  def msl(self,y): 
    return T.mean((y - self.result)**2) 

def regrun(rate,data,labels): 

  X = theano.shared(np.asarray(data, 
                 dtype=theano.config.floatX),borrow = True) 
  Y = theano.shared(np.asarray(labels, 
                 dtype=theano.config.floatX),borrow = True) 

  index = T.lscalar() #定义符号化的公式
  x = T.dscalar('x')  #定义符号化的公式
  y = T.dscalar('y')  #定义符号化的公式

  reg = Linear_Reg(x = x) 
  cost = reg.msl(y) 


  a_g = T.grad(cost = cost,wrt = reg.a) #计算梯度 
  b_g = T.grad(cost = cost, wrt = reg.b) #计算梯度

  updates=[(reg.a,reg.a - rate * a_g),(reg.b,reg.b - rate * b_g)] #更新参数
  train_model = theano.function(inputs=[index], outputs = reg.msl(y),updates = updates,givens = {x:X[index], y:Y[index]}) 

  done = True 
  err = 0.0 
  count = 0 
  last = 0.0 
  start_time = time.clock() 
  while done: 
    #err_s = [train_model(i) for i in xrange(data.shape[0])] 
    for i in xxx:
      err_s = [train_model(i) ]
      err = np.mean(err_s)  

    #print err 
    count = count + 1 
    if count > 10000 or err <0.1: 
      done = False 
    last = err 
  end_time = time.clock() 
  print 'Total time is :',end_time -start_time,' s' # 5.12s 
  print 'last error :',err 
  print 'a value : ',reg.a.get_value() # [ 2.92394467]  
  print 'b value : ',reg.b.get_value() # [ 1.81334458] 

if __name__ == '__main__':  
  rate = 0.01 
  data = np.linspace(1,10,10) 
  labels = data * 3 + np.ones(data.shape[0],dtype=np.float64) +np.random.rand(data.shape[0])
  regrun(rate,data,labels) 

其基本思想是随机梯度下降。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

用python处理图片之打开\显示\保存图像的方法

用python处理图片之打开\显示\保存图像的方法

一提到数字图像处理,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1、不开源,价格贵 2、软件容量大。一般3G以上,高版本甚至达5G以上。 3、只能做研究,不易转化成...

详解Python3 对象组合zip()和回退方式*zip

详解Python3 对象组合zip()和回退方式*zip

zip即将多个可迭代对象组合为一个可迭代的对象,每次组合时都取出对应顺序的对象元素组合为元组,直到最少的对象中元素全部被组合,剩余的其他对象中未被组合的元素将被舍弃。 keys =...

浅析python 中大括号中括号小括号的区分

python语言最常见的括号有三种,分别是:小括号( )、中括号[ ]和大括号也叫做花括号{ }。其作用也各不相同,分别用来代表不同的python基本内置数据类型。 1.python中的...

pandas.DataFrame的pivot()和unstack()实现行转列

pandas.DataFrame的pivot()和unstack()实现行转列

示例:有如下表需要进行行转列: 代码如下: # -*- coding:utf-8 -*- import pandas as pd import MySQLdb from wa...

Python自动化开发学习之三级菜单制作

Python自动化开发学习之三级菜单制作

本文实例为大家分享了Python三级菜单展示的具体代码,供大家参考,具体内容如下 作业需求: (1)运行程序输出第一级菜单 (2)选择一级菜单某项,输出二级菜单,同理输出三级菜单 (3...