探究Python多进程编程下线程之间变量的共享问题

yipeiwu_com6年前Python基础

 1、问题:

群中有同学贴了如下一段代码,问为何 list 最后打印的是空值?
 

from multiprocessing import Process, Manager
import os
 
manager = Manager()
vip_list = []
#vip_list = manager.list()
 
def testFunc(cc):
  vip_list.append(cc)
  print 'process id:', os.getpid()
 
if __name__ == '__main__':
  threads = []
 
  for ll in range(10):
    t = Process(target=testFunc, args=(ll,))
    t.daemon = True
    threads.append(t)
 
  for i in range(len(threads)):
    threads[i].start()
 
  for j in range(len(threads)):
    threads[j].join()
 
  print "------------------------"
  print 'process id:', os.getpid()
  print vip_list

其实如果你了解 python 的多线程模型,GIL 问题,然后了解多线程、多进程原理,上述问题不难回答,不过如果你不知道也没关系,跑一下上面的代码你就知道是什么问题了。
 

python aa.py
process id: 632
process id: 635
process id: 637
process id: 633
process id: 636
process id: 634
process id: 639
process id: 638
process id: 641
process id: 640
------------------------
process id: 619
[]

将第 6 行注释开启,你会看到如下结果:
 

process id: 32074
process id: 32073
process id: 32072
process id: 32078
process id: 32076
process id: 32071
process id: 32077
process id: 32079
process id: 32075
process id: 32080
------------------------
process id: 32066
[3, 2, 1, 7, 5, 0, 6, 8, 4, 9]

2、python 多进程共享变量的几种方式:
(1)Shared memory:
Data can be stored in a shared memory map using Value or Array. For example, the following code

http://docs.python.org/2/library/multiprocessing.html#sharing-state-between-processes
 

from multiprocessing import Process, Value, Array
 
def f(n, a):
  n.value = 3.1415927
  for i in range(len(a)):
    a[i] = -a[i]
 
if __name__ == '__main__':
  num = Value('d', 0.0)
  arr = Array('i', range(10))
 
  p = Process(target=f, args=(num, arr))
  p.start()
  p.join()
 
  print num.value
  print arr[:]

结果:
 

3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

(2)Server process:

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.
A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Queue, Value and Array.
代码见开头的例子。

http://docs.python.org/2/library/multiprocessing.html#managers
3、多进程的问题远不止这么多:数据的同步

看段简单的代码:一个简单的计数器:
 

from multiprocessing import Process, Manager
import os
 
manager = Manager()
sum = manager.Value('tmp', 0)
 
def testFunc(cc):
  sum.value += cc
 
if __name__ == '__main__':
  threads = []
 
  for ll in range(100):
    t = Process(target=testFunc, args=(1,))
    t.daemon = True
    threads.append(t)
 
  for i in range(len(threads)):
    threads[i].start()
 
  for j in range(len(threads)):
    threads[j].join()
 
  print "------------------------"
  print 'process id:', os.getpid()
  print sum.value

结果:
 

------------------------
process id: 17378
97

也许你会问:WTF?其实这个问题在多线程时代就存在了,只是在多进程时代又杯具重演了而已:Lock!
 

from multiprocessing import Process, Manager, Lock
import os
 
lock = Lock()
manager = Manager()
sum = manager.Value('tmp', 0)
 
 
def testFunc(cc, lock):
  with lock:
    sum.value += cc
 
 
if __name__ == '__main__':
  threads = []
 
  for ll in range(100):
    t = Process(target=testFunc, args=(1, lock))
    t.daemon = True
    threads.append(t)
 
  for i in range(len(threads)):
    threads[i].start()
 
  for j in range(len(threads)):
    threads[j].join()
 
  print "------------------------"
  print 'process id:', os.getpid()
  print sum.value

这段代码性能如何呢?跑跑看,或者加大循环次数试一下。。。
4、最后的建议:

    Note that usually sharing data between processes may not be the best choice, because of all the synchronization issues; an approach involving actors exchanging messages is usually seen as a better choice. See also Python documentation: As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as possible. This is particularly true when using multiple processes. However, if you really do need to use some shared data then multiprocessing provides a couple of ways of doing so.

5、Refer:

http://stackoverflow.com/questions/14124588/python-multiprocessing-shared-memory

http://eli.thegreenplace.net/2012/01/04/shared-counter-with-pythons-multiprocessing/

http://docs.python.org/2/library/multiprocessing.html#multiprocessing.sharedctypes.synchronized

相关文章

为python设置socket代理的方法

首先,你得下载SocksiPy这个.解压出来之后里面会有一个socks.py文件.然后你可以把这个文件复制到python安装目录里面的Lib\site-packages中.或者把这个文件...

Python学习笔记(一)(基础入门之环境搭建)

Python学习笔记(一)(基础入门之环境搭建)

  Python入门       本系列为Python学习相关笔记整理所得,IT人,多学无害,多多探索,激发学习兴趣,开拓思维...

django数据关系一对多、多对多模型、自关联的建立

一对多模型 一对多的关系,例如员工跟部门。一个部门有多个员工。那么在django怎么建立这种表关系呢? 其实就是利用外键,在多的一方,字段指定外键即可。例如员工和部门,员工是多,所以在...

Python 中Pickle库的使用详解

Python 中Pickle库的使用详解

在“通过简单示例来理解什么是机器学习”这篇文章里提到了pickle库的使用,本文来做进一步的阐述。 那么为什么需要序列化和反序列化这一操作呢?   1.便于存储。序列化过程将文本信息转变...

Python学习笔记之视频人脸检测识别实例教程

Python学习笔记之视频人脸检测识别实例教程

前言 上一篇博文与大家分享了简单的图片人脸识别技术,其实在实际应用中,很多是通过视频流的方式进行识别,比如人脸识别通道门禁考勤系统、人脸动态跟踪识别系统等等。 下面话不多说了,来一起看...