python 实现在一张图中绘制一个小的子图方法

yipeiwu_com5年前Python基础

有时候为了直观展现图的信息,可以在大图中添加小子图的方式进行数据分析,如下图所示:

具体的代码如下:该图连接了数据库,当然重要的不是数据展示,而是添加子图的方法。

import matplotlib.pyplot as plt
import MySQLdb as mdb
import numpy as np
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset


def graph():
  # 连接数据库
  conn = mdb.connect(host='127.0.0.1', port=3306, user='root', passwd='root', db='alibaba_trace', charset='utf8')

  # 如果使用事务引擎,可以设置自动提交事务,或者在每次操作完成后手动提交事务conn.commit()
  conn.autocommit(1) # conn.autocommit(True)

  # 使用cursor()方法获取操作游标
  cursor = conn.cursor()
  # 因该模块底层其实是调用CAPI的,所以,需要先得到当前指向数据库的指针。
  try:
    cursor.execute("select machineID, count(id) from batch_instance where machineID != 0 group by machineID")
    records = cursor.fetchall()
    list_records = list(records)

  except:
    import traceback
    traceback.print_exc()
    # 发生错误时回滚
    conn.rollback()
  finally:
    # 关闭游标连接
    cursor.close()
    # 关闭数据库连接
    conn.close()

  res = []
  res[:] = map(list, list_records)
  machineID = [x[0] for x in res]
  instance_num = [x[1] for x in res]
  print(max(instance_num))
  print(min(instance_num))


  fig = plt.figure()
  ax1 = fig.add_subplot(1, 1, 1)
  # # cdf
  # hist, bin_edges = np.histogram(instance_num, bins=len(np.unique(instance_num)))
  # cdf = np.cumsum(hist / sum(hist))
  # ax1.plot(bin_edges[1:], cdf, color='red', ls='-')
  # ax1.set_xlabel("instance number per machine")
  # ax1.set_ylabel("portion of machine")
  # plt.savefig('../../imgs_mysql/cdf_of_machine_instance.png')

  # # 直方图
  ax1.hist(instance_num, normed=False, alpha=1.0, bins=100)
  ax1.set_xlabel('instance number per machine')
  ax1.set_ylabel('machine number')
  # cdf 要添加的子图
  axins = inset_axes(ax1, width=1.5, height=1.5, loc='upper left')
  # ax1 大图
  # width height分别为子图的宽和高
  # loc 为子图在大图ax1中的相对位置 相应的值有
  # upper left
  # lower left
  # lower right
  # right
  # center left
  # center right
  # lower center
  # upper center
  # center
  hist, bin_edges = np.histogram(instance_num, bins=len(np.unique(instance_num)))
  cdf = np.cumsum(hist / sum(hist))
  axins.plot(bin_edges[1:], cdf, color='red', ls='-')
  axins.set_yticks([])
  # axins.set_xlabel("instance number per machine")
  # axins.set_ylabel("portion of machine")

  plt.savefig("../../imgs_mysql/hist_of_machine_instance")
  plt.show()

if __name__ == '__main__':
  graph()

以上这篇python 实现在一张图中绘制一个小的子图方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

TensorFlow实现模型评估

TensorFlow实现模型评估

我们需要评估模型预测值来评估训练的好坏。 模型评估是非常重要的,随后的每个模型都有模型评估方式。使用TensorFlow时,需要把模型评估加入到计算图中,然后在模型训练完后调用模型评...

python list转置和前后反转的例子

python list转置和前后反转的例子

list/tuple转置: 以二维grid[][]为例: grid = [[row[i] for row in grid] for i in range(len(grid[0]))]...

快速查询Python文档方法分享

快速查询Python文档方法分享

Pydoc本地HTML形式查看 我们在编写Python代码时,常常会去查询某些模块及函数的使用,会选择dir()及help()函数、或查看CHM格式的Python帮助文档、或查看Pyth...

跟老齐学Python之不要红头文件(2)

文件的属性 所谓属性,就是能够通过一个文件对象得到的东西。 复制代码 代码如下: >>> f = open("131.txt","a") >>> f....

Python中shutil模块的常用文件操作函数用法示例

os模块提供了对目录或者文件的新建/删除/查看文件属性,还提供了对文件以及目录的路径操作。比如说:绝对路径,父目录……  但是,os文件的操作还应该包含移动 复制 ...