tensorflow 只恢复部分模型参数的实例

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

import tensorflow as tf

def model_1():
  with tf.variable_scope("var_a"):
    a = tf.Variable(initial_value=[1, 2, 3], name="a")

  vars = [var for var in tf.trainable_variables() if var.name.startswith("var_a")]
  print(len(vars))
  return vars

def model_2():

  vars1 = model_1()

  with tf.variable_scope("var_b"):
    a = tf.Variable(initial_value=[1, 2, 3], name="a")

  vars2 = [var for var in tf.trainable_variables() if var.name.startswith("var")]
  print(len(vars2))
  return vars1


def pretrain_model1():
  print("-------- model 1 ------")
  vars = model_1()

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.save(sess, "./model.ckpt")

def train_model2():
  print("-------- model 2 ------")

  model1_vars = model_2()

  with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.Saver(var_list=model1_vars)
    saver.restore(sess, "./model.ckpt")
    vars = sess.run([model1_vars])
    for var in vars:
      print(var)

step = 2
if step == 1:
  pretrain_model1()
else:
  train_model2()

以上这篇tensorflow 只恢复部分模型参数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Tensorflow实现卷积神经网络用于人脸关键点识别

Tensorflow实现卷积神经网络用于人脸关键点识别

今年来人工智能的概念越来越火,AlphaGo以4:1击败李世石更是起到推波助澜的作用。作为一个开挖掘机的菜鸟,深深感到不学习一下deep learning早晚要被淘汰。 既然要开始学,当...

python sklearn常用分类算法模型的调用

本文实例为大家分享了python sklearn分类算法模型调用的具体代码,供大家参考,具体内容如下 实现对'NB', 'KNN', 'LR', 'RF',...

Python THREADING模块中的JOIN()方法深入理解

看了oschina上的两个代码,受益匪浅。其中对join()方法不理解,看python官网文档的介绍: join([timeout]):等待直到进程结束。这将阻塞正在调用的线程,直到被调...

Python实现读取txt文件中的数据并绘制出图形操作示例

Python实现读取txt文件中的数据并绘制出图形操作示例

本文实例讲述了Python实现读取txt文件中的数据并绘制出图形操作。分享给大家供大家参考,具体如下: 下面的是某一文本文件中的数据。 6.1101,17.592 5.5277,9.1...

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

CGAN的全拼是Conditional Generative Adversarial Networks,条件生成对抗网络,在初始GAN的基础上增加了图片的相应信息。 这里用传统的卷积方式...