python 中值滤波,椒盐去噪,图片增强实例

yipeiwu_com6年前Python基础

受光照、气候、成像设备等因素的影响,灰度化后的图像存在噪声和模糊干扰,直接影响到下一步的文字识别,因此,需要对图像进行增强处理。图片预处理中重要一环就是椒盐去澡,通常用到中值滤波器进行处理,效果很好。中值滤波器是一种非线性滤波器,其基本原理是把数字图像中某点的值用其领域各点值的中值代替。

如求点[i,j]的灰度值计算方法为:

(1)按灰度值顺序排列[i,j]领域中的像素点;

(2)取排序像素集的中间值作为[i,j]的灰度值。中值滤波技术能有效抑制噪声。

直接上代码,希望给大家有帮助:

import numpy as np
import cv2
import tensorflow as tf
from PIL import Image
import os
import scipy.signal as signal

input_images = np.zeros((300, 300))
filename = "D:\字母图库\F\P80627-112853.jpg"
print(filename)
img = Image.open(filename).resize((300, 300)).convert('L')
width = img.size[0]
height = img.size[1]

for h in range(0, height):
  for w in range(0, width):
    if img.getpixel((h, w)) < 128:
      input_images[w, h] = 0
    else:
      input_images[w, h] = 1
cv2.imshow("test1111", input_images)

data = signal.medfilt2d(np.array(img), kernel_size=3) # 二维中值滤波
for h in range(0, height):
  for w in range(0, width):
    if data[h][w] < 128:
      input_images[w, h] = 0
    else:
      input_images[w, h] = 1
cv2.imshow("test2222", input_images)

data = signal.medfilt2d(np.array(img), kernel_size=5) # 二维中值滤波
for h in range(0, height):
  for w in range(0, width):
    if data[h][w] < 128:
      input_images[w, h] = 0
    else:
      input_images[w, h] = 1
cv2.imshow("test3333", input_images)
cv2.waitKey(0)

以上这篇python 中值滤波,椒盐去噪,图片增强实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于ID3决策树算法的实现(Python版)

基于ID3决策树算法的实现(Python版)

实例如下: # -*- coding:utf-8 -*- from numpy import * import numpy as np import pandas as pd fr...

Django 自动生成api接口文档教程

Django 自动生成api接口文档教程

最近在写测试平台,需要实现一个节点服务器的api,正好在用django,准备使用djangorestframework插件实现。 需求 实现一个接口,在调用时,通过传递的参数,直接运行对...

使用django的ORM框架按月统计近一年内的数据方法

如下所示: # 计算时间 time = datetime.datetime.now() - relativedelta(years=1) # 获取近一年数据 one_year_dat...

Python机器学习k-近邻算法(K Nearest Neighbor)实例详解

Python机器学习k-近邻算法(K Nearest Neighbor)实例详解

本文实例讲述了Python机器学习k-近邻算法。分享给大家供大家参考,具体如下: 工作原理 存在一份训练样本集,并且每个样本都有属于自己的标签,即我们知道每个样本集中所属于的类别。输入没...

详谈Python中列表list,元祖tuple和numpy中的array区别

1.列表 list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个序列的项目。列表中的项目。列表中的项目应该包括在方括号中,这样python就知道你是在指明一个列表。一旦你创建...