Python数据可视化实现正态分布(高斯分布)

yipeiwu_com6年前Python基础

正态分布(Normal distribution)又成为高斯分布(Gaussian distribution)

若随机变量X服从一个数学期望为、标准方差为的高斯分布,记为:

则其概率密度函数为:

正态分布的期望值决定了其位置,其标准差决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是的正态分布:

概率密度函数

 

 

代码实现:

# Python实现正态分布
  # 绘制正态分布概率密度函数
  u = 0  # 均值μ
  u01 = -2
  sig = math.sqrt(0.2) # 标准差δ
  sig01 = math.sqrt(1)
  sig02 = math.sqrt(5)
  sig_u01 = math.sqrt(0.5)
  x = np.linspace(u - 3*sig, u + 3*sig, 50)
  x_01 = np.linspace(u - 6 * sig, u + 6 * sig, 50)
  x_02 = np.linspace(u - 10 * sig, u + 10 * sig, 50)
  x_u01 = np.linspace(u - 10 * sig, u + 1 * sig, 50)
  y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)
  y_sig01 = np.exp(-(x_01 - u) ** 2 /(2* sig01 **2))/(math.sqrt(2*math.pi)*sig01)
  y_sig02 = np.exp(-(x_02 - u) ** 2 / (2 * sig02 ** 2)) / (math.sqrt(2 * math.pi) * sig02)
  y_sig_u01 = np.exp(-(x_u01 - u01) ** 2 / (2 * sig_u01 ** 2)) / (math.sqrt(2 * math.pi) * sig_u01)
  plt.plot(x, y_sig, "r-", linewidth=2)
  plt.plot(x_01, y_sig01, "g-", linewidth=2)
  plt.plot(x_02, y_sig02, "b-", linewidth=2)
  plt.plot(x_u01, y_sig_u01, "m-", linewidth=2)
  # plt.plot(x, y, 'r-', x, y, 'go', linewidth=2,markersize=8)
  plt.grid(True)
  plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python unittest实现api自动化测试

项目测试对于一个项目的重要性,大家应该都知道吧,写python的朋友,应该都写过自动化测试脚本。 最近正好负责公司项目中的api测试,下面写了一个简单的例子,对API 测试进行梳理。...

python二进制读写及特殊码同步实现详解

python对二进制文件的操作需要使用bytes类,直接写入整数是不行的,如果试图使用f.write(123)向文件中以二进制写入123,结果提示参数不是bytes类型。 impor...

python利用装饰器进行运算的实例分析

今天想用python的装饰器做一个运算,代码如下 >>> def mu(x): def _mu(*args,**kwargs): return x*x...

余弦相似性计算及python代码实现过程解析

余弦相似性计算及python代码实现过程解析

A:西米喜欢健身 B:超超不爱健身,喜欢打游戏 step1:分词 A:西米/喜欢/健身 B:超超/不/喜欢/健身,喜欢/打/游戏 step2:列出两个句子的并集 西米/喜欢/健身/超...

这可能是最好玩的python GUI入门实例(推荐)

这可能是最好玩的python GUI入门实例(推荐)

简单的说,GUI编程就是给程序加上图形化界面. python的脚本开发简单,有时候只需几行代码就能实现丰富的功能,而且python本身是跨平台的,所以深受程序员的喜爱. 如果给程序加一...