python判断、获取一张图片主色调的2个实例

yipeiwu_com6年前Python基础

python判断图片主色调,单个颜色:

复制代码 代码如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import colorsys
from PIL import Image
import optparse

def get_dominant_color(image):
"""
Find a PIL image's dominant color, returning an (r, g, b) tuple.
"""

image = image.convert('RGBA')

# Shrink the image, so we don't spend too long analysing color
# frequencies. We're not interpolating so should be quick.
image.thumbnail((200, 200))

max_score = None
dominant_color = None

for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# Skip 100% transparent pixels
if a == 0:
continue

# Get color saturation, 0-1
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]

# Calculate luminance - integer YUV conversion from
# http://en.wikipedia.org/wiki/YUV
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) >> 13, 235)

# Rescale luminance from 16-235 to 0-1
y = (y - 16.0) / (235 - 16)

# Ignore the brightest colors
if y > 0.9:
continue

# Calculate the score, preferring highly saturated colors.
# Add 0.1 to the saturation so we don't completely ignore grayscale
# colors by multiplying the count by zero, but still give them a low
# weight.
score = (saturation + 0.1) * count

if score > max_score:
max_score = score
dominant_color = (r, g, b)

return dominant_color

def main():
img = Image.open("meitu.jpg")
print '#%02x%02x%02x' % get_dominant_color(img)

if __name__ == '__main__':
main()

python判断一张图片的主色调,多个颜色:

复制代码 代码如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import colorsys
from PIL import Image
import optparse

def get_dominant_color(image):
"""
Find a PIL image's dominant color, returning an (r, g, b) tuple.
"""

image = image.convert('RGBA')

# Shrink the image, so we don't spend too long analysing color
# frequencies. We're not interpolating so should be quick.
## image.thumbnail((200, 200))

max_score = 1
dominant_color = []

for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# Skip 100% transparent pixels
if a == 0:
continue

# Get color saturation, 0-1
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]

# Calculate luminance - integer YUV conversion from
# http://en.wikipedia.org/wiki/YUV
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) >> 13, 235)

# Rescale luminance from 16-235 to 0-1
y = (y - 16.0) / (235 - 16)

# Ignore the brightest colors
if y > 0.9:
continue

# Calculate the score, preferring highly saturated colors.
# Add 0.1 to the saturation so we don't completely ignore grayscale
# colors by multiplying the count by zero, but still give them a low
# weight.
score = (saturation + 0.1) * count
if score > max_score:
max_score = score
dominant_color.append((r, g, b))

return dominant_color

def main():
img = Image.open("meitu.jpg")
colors = get_dominant_color(img)
for item in colors:
print '#%02x%02x%02x' % item

if __name__ == '__main__':
main()

 

相关文章

Python从MP3文件获取id3的方法

本文实例讲述了Python从MP3文件获取id3的方法。分享给大家供大家参考。具体如下: def getID3(filename): fp = open(filename, 'r...

Python进程通信之匿名管道实例讲解

匿名管道 管道是一个单向通道,有点类似共享内存缓存.管道有两端,包括输入端和输出端.对于一个进程的而言,它只能看到管道一端,即要么是输入端要么是输出端. os.pipe()返回2个文件描...

如何用OpenCV -python3实现视频物体追踪

如何用OpenCV -python3实现视频物体追踪

opencv OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系...

深入了解Django中间件及其方法

深入了解Django中间件及其方法

前言 我们可以给视图函数加装饰器来判断是用户是否登录,把没有登录的用户请求跳转到登录页面等等。我们通过给几个特定视图函数加装饰器实现了这个需求,但是以后添加的视图函数可能也需要加上装饰器...

利用Python代码实现数据可视化的5种方法详解

利用Python代码实现数据可视化的5种方法详解

前言 数据科学家并不逊色于艺术家。他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解。更有趣的是,一旦接触到任何可视化的内容、数据时,人类会有更强烈的知觉、认知和交流...