Python使用lxml模块和Requests模块抓取HTML页面的教程

yipeiwu_com5年前Python爬虫

Web抓取
Web站点使用HTML描述,这意味着每个web页面是一个结构化的文档。有时从中 获取数据同时保持它的结构是有用的。web站点不总是以容易处理的格式, 如 csv 或者 json 提供它们的数据。

这正是web抓取出场的时机。Web抓取是使用计算机程序将web页面数据进行收集 并整理成所需格式,同时保存其结构的实践。

lxml和Requests
lxml(http://lxml.de/)是一个优美的扩展库,用来快速解析XML以及HTML文档 即使所处理的标签非常混乱。我们也将使用 Requests (http://docs.python-requests.org/en/latest/#)模块取代内建的urllib2模块,因为其速度更快而且可读性更好。你可以通过使用 pip install lxml 与 pip install requests 命令来安装这两个模块。

让我们以下面的导入开始:

from lxml import html
import requests

下一步我们将使用 requests.get 来从web页面中取得我们的数据, 通过使用 html 模块解析它,并将结果保存到 tree 中。

page = requests.get('http://econpy.pythonanywhere.com/ex/001.html')
tree = html.fromstring(page.text)

tree 现在包含了整个HTML文件到一个优雅的树结构中,我们可以使用两种 方法访问:XPath以及CSS选择器。在这个例子中,我们将选择前者。

XPath是一种在结构化文档(如HTML或XML)中定位信息的方式。一个关于XPath的 不错的介绍参见 W3Schools 。

有很多工具可以获取元素的XPath,如Firefox的FireBug或者Chrome的Inspector。 如果你使用Chrome,你可以右键元素,选择 ‘Inspect element',高亮这段代码, 再次右击,并选择 ‘Copy XPath'。

在进行一次快速分析后,我们看到在页面中的数据保存在两个元素中,一个是title是 ‘buyer-name' 的div,另一个class是 ‘item-price' 的span:

<div title="buyer-name">Carson Busses</div>
<span class="item-price">$29.95</span>

知道这个后,我们可以创建正确的XPath查询并且使用lxml的 xpath 函数, 像下面这样:

#这将创建buyers的列表:
buyers = tree.xpath('//div[@title="buyer-name"]/text()')
#这将创建prices的列表:
prices = tree.xpath('//span[@class="item-price"]/text()')

让我们看看我们得到了什么:

print 'Buyers: ', buyers
print 'Prices: ', prices
Buyers: ['Carson Busses', 'Earl E. Byrd', 'Patty Cakes',
'Derri Anne Connecticut', 'Moe Dess', 'Leda Doggslife', 'Dan Druff',
'Al Fresco', 'Ido Hoe', 'Howie Kisses', 'Len Lease', 'Phil Meup',
'Ira Pent', 'Ben D. Rules', 'Ave Sectomy', 'Gary Shattire',
'Bobbi Soks', 'Sheila Takya', 'Rose Tattoo', 'Moe Tell']

Prices: ['$29.95', '$8.37', '$15.26', '$19.25', '$19.25',
'$13.99', '$31.57', '$8.49', '$14.47', '$15.86', '$11.11',
'$15.98', '$16.27', '$7.50', '$50.85', '$14.26', '$5.68',
'$15.00', '$114.07', '$10.09']

恭喜!我们已经成功地通过lxml与Request,从一个web页面中抓取了所有我们想要的 数据。我们将它们以列表的形式存在内存中。现在我们可以对它做各种很酷的事情了: 我们可以使用Python分析它,或者我们可以将之保存为一个文件并向世界分享。

我们可以考虑一些更酷的想法:修改这个脚本来遍历该例数据集中剩余的页面,或者 使用多线程重写这个应用从而提升它的速度。

相关文章

python利用beautifulSoup实现爬虫

以前讲过利用phantomjs做爬虫抓网页 /post/55789.htm 是配合选择器做的 利用 beautifulSoup(文档 :http://www.crummy.com/sof...

python 爬虫一键爬取 淘宝天猫宝贝页面主图颜色图和详情图的教程

实例如下所示: import requests import re,sys,os import json import threading import pprint class s...

编写Python爬虫抓取暴走漫画上gif图片的实例分享

本文要介绍的爬虫是抓取暴走漫画上的GIF趣图,方便离线观看。爬虫用的是python3.3开发的,主要用到了urllib、request和BeautifulSoup模块。 urllib模块...

python3爬虫之设计签名小程序

python3爬虫之设计签名小程序

本文实例为大家分享了python3设计签名小程序的具体代码,供大家参考,具体内容如下 首先,上一下要做的效果图: 先是这样一个丑陋的界面(我尽力了的真的!) 然后随便输入名字 然后点...

python爬虫中多线程的使用详解

queue介绍 queue是python的标准库,俗称队列.可以直接import引用,在python2.x中,模块名为Queue。python3直接queue即可 在python中,多个...