Python性能提升之延迟初始化

yipeiwu_com5年前Python基础

所谓类属性的延迟计算就是将类的属性定义成一个property,只在访问的时候才会计算,而且一旦被访问后,结果将会被缓存起来,不用每次都计算。构造一个延迟计算属性的主要目的是为了提升性能

property

在切入正题之前,我们了解下property的用法,property可以将属性的访问转变成方法的调用。

class Circle(object): 
 def __init__(self, radius): 
  self.radius = radius 
  
 @property
 def area(self): 
  return 3.14 * self.radius ** 2
  
c = Circle(4) 
print c.radius 
print c.area

可以看到,area虽然是定义成一个方法的形式,但是加上@property后,可以直接执行c.area,当成属性访问。

现在问题来了,每次调用c.area,都会计算一次,太浪费cpu了,怎样才能只计算一次呢?这就是lazy property

代码实现

class LazyProperty(object):
 def __init__(self, func):
  self.func = func
 def __get__(self, instance, owner):
  if instance is None:
   return self
  else:
   value = self.func(instance)
   setattr(instance, self.func.__name__, value)
   return value
import math
class Circle(object):
 def __init__(self, radius):
  self.radius = radius
 @LazyProperty
 def area(self):
  print 'Computing area'
  return math.pi * self.radius ** 2
 @LazyProperty
 def perimeter(self):
  print 'Computing perimeter'
  return 2 * math.pi * self.radius

说明

定义了一个延迟计算的装饰器类LazyProperty。Circle是用于测试的类,Circle类有是三个属性半径(radius)、面积(area)、周长(perimeter)。面积和周长的属性被LazyProperty装饰,下面来试试LazyProperty的魔法:

>>> c = Circle(2)
>>> print c.area
Computing area
12.5663706144
>>> print c.area
12.5663706144

在area()中每计算一次就会打印一次“Computing area”,而连续调用两次c.area后“Computing area”只被打印了一次。这得益于LazyProperty,只要调用一次后,无论后续调用多少次都不会重复计算。

相关文章

Python实现的朴素贝叶斯分类器示例

本文实例讲述了Python实现的朴素贝叶斯分类器。分享给大家供大家参考,具体如下: 因工作中需要,自己写了一个朴素贝叶斯分类器。 对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的...

对Python模块导入时全局变量__all__的作用详解

对Python模块导入时全局变量__all__的作用详解

Python中一个py文件就是一个模块,“__all__”变量是一个特殊的变量,可以在py文件中,也可以在包的__init__.py中出现。 1、在普通模块中使用时,表示一个模块中允许哪...

对python中的控制条件、循环和跳出详解

对python中的控制条件、循环和跳出详解 代码缩进(代码块): python用缩进表示代码块,没有其他语言的大括号 缩进是强制检查,整个代码缩进必须一致,否则无法运行 用2、4个空格或...

python+opencv 读取文件夹下的所有图像并批量保存ROI的方法

如下所示: import cv2 import os import numpy as np root_path = "I:/Images/2017_08_03/" dir =...

用python实现的可以拷贝或剪切一个文件列表中的所有文件

复制代码 代码如下:# coding:utf-8 import os import sys def cut_and_paste_file(source, destination): &n...