Python数据可视化正态分布简单分析及实现代码

yipeiwu_com6年前Python基础

Python说来简单也简单,但是也不简单,尤其是再跟高数结合起来的时候。。。

正态分布(Normaldistribution),也称“常态分布”,又名高斯分布(Gaussiandistribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为

N(μ,σ^2)

其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。其概率密度函数为:

我们通常所说的标准正态分布是的正态分布:

概率密度函数

代码实现:

 # Python实现正态分布
 # 绘制正态分布概率密度函数
 u = 0 # 均值μ
 u01 = -2
 sig = math.sqrt(0.2) # 标准差δ
 sig01 = math.sqrt(1)
 sig02 = math.sqrt(5)
 sig_u01 = math.sqrt(0.5)
 x = np.linspace(u - 3*sig, u + 3*sig, 50)
 x_01 = np.linspace(u - 6 * sig, u + 6 * sig, 50)
 x_02 = np.linspace(u - 10 * sig, u + 10 * sig, 50)
 x_u01 = np.linspace(u - 10 * sig, u + 1 * sig, 50)
 y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)
 y_sig01 = np.exp(-(x_01 - u) ** 2 /(2* sig01 **2))/(math.sqrt(2*math.pi)*sig01)
 y_sig02 = np.exp(-(x_02 - u) ** 2 / (2 * sig02 ** 2)) / (math.sqrt(2 * math.pi) * sig02)
 y_sig_u01 = np.exp(-(x_u01 - u01) ** 2 / (2 * sig_u01 ** 2)) / (math.sqrt(2 * math.pi) * sig_u01)
 plt.plot(x, y_sig, "r-", linewidth=2)
 plt.plot(x_01, y_sig01, "g-", linewidth=2)
 plt.plot(x_02, y_sig02, "b-", linewidth=2)
 plt.plot(x_u01, y_sig_u01, "m-", linewidth=2)
 # plt.plot(x, y, 'r-', x, y, 'go', linewidth=2,markersize=8)
 plt.grid(True)
 plt.show()

总结

以上就是本文关于Python数据可视化正态分布简单分析及实现代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他Python算法相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

selenium+python实现1688网站验证码图片的截取功能

selenium+python实现1688网站验证码图片的截取功能

1. 背景 •在1688网站爬取数据时,如果访问过于频繁,无论用户是否已经登录,就会弹出如下所示的验证码登录框。 一般的验证码是类似于如下的元素(通过链接单独加载进页面...

Python标准库sched模块使用指南

事件调度 sched 模块内容很简单,只定义了一个类。它用来最为一个通用的事件调度模块。 class sched.scheduler(timefunc, delayfunc) 这个类定义...

python支持断点续传的多线程下载示例

复制代码 代码如下:#! /usr/bin/env python#coding=utf-8 from __future__ import unicode_literals from mu...

基于python解线性矩阵方程(numpy中的matrix类)

这学期有一门运筹学,讲的两大块儿:线性优化和非线性优化问题。在非线性优化问题这里涉及到拉格朗日乘子法,经常要算一些非常变态的线性方程,于是我就想用python求解线性方程。查阅资料的过程...

总结Python编程中三条常用的技巧

在 python 代码中可以看到一些常见的 trick,在这里做一个简单的小结。 json 字符串格式化 在开发 web 应用的时候经常会用到 json 字符串,但是一段比较长的 jso...