浅谈DataFrame和SparkSql取值误区

yipeiwu_com5年前Python基础

1、DataFrame返回的不是对象。

2、DataFrame查出来的数据返回的是一个dataframe数据集。

3、DataFrame只有遇见Action的算子才能执行

4、SparkSql查出来的数据返回的是一个dataframe数据集。

原始数据

scala> val parquetDF = sqlContext.read.parquet("hdfs://hadoop14:9000/yuhui/parquet/part-r-00004.gz.parquet")
df: org.apache.spark.sql.DataFrame = [timestamp: string, appkey: string, app_version: string, channel: string, lang: string, os_type: string, os_version: string, display: string, device_type: string, mac: string, network: string, nettype: string, suuid: string, register_days: int, country: string, area: string, province: string, city: string, event: string, use_interval_cat: string, use_duration_cat: string, use_interval: bigint, use_duration: bigint, os_upgrade_from: string, app_upgrade_from: string, page_name: string, event_name: string, error_type: string]

代码

package DataFrame
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
/**
 * Created by yuhui on 2016/6/14.
 */
object DataFrameTest {
 def main(args: Array[String]) {
 DataFrameInto()
 }
 def DataFrameInto() {
 val conf = new SparkConf()
 val sc = new SparkContext(conf)
 val sqlContext = new SQLContext(sc)
 val df = sqlContext.read.parquet("hdfs://hadoop14:9000/yuhui/parquet")
 //df.map(line => printinfo(line.getString(0)))
 //df.foreach(line => printinfo(line.getString(0)+" , "+line.getString(14)+" , "+line.getString(15)))
 //df.select("timestamp","country","area").foreach(line=>printinfo(line.toString))
 df.registerTempTable("infotable")
 sqlContext.sql("SELECT timestamp , country , area from infotable").foreach(line=>printinfo(line.toString))
 }
 def printinfo(msg: String) {println("printinfo函数-->" + msg) }
}

代码解析

1、df.map(line => printinfo(line.getString(0)))

这段代码不行执行printinfo()函数,因为只有map算子,没有Action算子。

2、df.foreach(line => printinfo(line.getString(0)+" , "+line.getString(14)+" , "+line.getString(15)))

通过Spark的Action算子接收数据进行操作,执行结果如下:

3、df.select("timestamp","country","area").foreach(line=>printinfo(line.toString))

通过DataFrame的API进行操作,再通过Spark的Action算子打印出来,执行结果如下:

4、sqlContext.sql("SELECT timestamp , country , area from infotable").foreach(line=>printinfo(line.toString))

执行结果如下:

以上这篇浅谈DataFrame和SparkSql取值误区就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python数据持久化shelve模块用法分析

本文实例讲述了Python数据持久化shelve模块用法。分享给大家供大家参考,具体如下: 一、简介 在python3中我们使用json或者pickle持久化数据,能dump多次,但只能...

浅谈Pandas Series 和 Numpy array中的相同点

相同点: 可以利用中括号获取元素 s[0] 可以的得到单个元素 或 一个元素切片 s[3,7] 可以遍历 for x in s 可以调用同样的函数获取最大最小值 s.mean() &nb...

python 实现查找文件并输出满足某一条件的数据项方法

python 实现文件查找和某些项输出 本文是基于给定一文件(students.txt),查找其中GPA分数最高的 输出,同时输出其对应的姓名和学分 一. 思路 首先需要打开文件,读取文...

解决python使用open打开文件中文乱码的问题

解决python使用open打开文件中文乱码的问题

代码如下: 先在D盘下新建一个html文档,然后在里面输入含有中文的Html字符如下图,然后我们首先使用中文格式对读取的字符进行解码再用utf-8的模式对字符进行进行编码,然后就能正确输...

Python映射拆分操作符用法实例

本文实例讲述了Python映射拆分操作符用法。分享给大家供大家参考。具体如下: name="jack" age=24 s="name is {name} and age is {ag...