pytorch 共享参数的示例

yipeiwu_com5年前Python基础

在很多神经网络中,往往会出现多个层共享一个权重的情况,pytorch可以快速地处理权重共享问题。

例子1:

class ConvNet(nn.Module):
  def __init__(self):
    super(ConvNet, self).__init__()
    self.conv_weight = nn.Parameter(torch.randn(3, 3, 5, 5))
 
  def forward(self, x):
    x = nn.functional.conv2d(x, self.conv_weight, bias=None, stride=1, padding=2, dilation=1, groups=1)
    x = nn.functional.conv2d(x, self.conv_weight.transpose(2, 3).contiguous(), bias=None, stride=1, padding=0, dilation=1,
                 groups=1)
    return x

上边这段程序定义了两个卷积层,这两个卷积层共享一个权重conv_weight,第一个卷积层的权重是conv_weight本身,第二个卷积层是conv_weight的转置。注意在gpu上运行时,transpose()后边必须加上.contiguous()使转置操作连续化,否则会报错。

例子2:

class LinearNet(nn.Module):
  def __init__(self):
    super(LinearNet, self).__init__()
    self.linear_weight = nn.Parameter(torch.randn(3, 3))
 
  def forward(self, x):
    x = nn.functional.linear(x, self.linear_weight)
    x = nn.functional.linear(x, self.linear_weight.t())
 
    return x

这个网络实现了一个双层感知器,权重同样是一个parameter的本身及其转置。

例子3:

class LinearNet2(nn.Module):
  def __init__(self):
    super(LinearNet2, self).__init__()
    self.w = nn.Parameter(torch.FloatTensor([[1.1,0,0], [0,1,0], [0,0,1]]))
 
  def forward(self, x):
    x = x.mm(self.w)
    x = x.mm(self.w.t())
    return x

这个方法直接用mm函数将x与w相乘,与上边的网络效果相同。

以上这篇pytorch 共享参数的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在漏洞利用Python代码真的很爽

不知道怎么忽然想看这个,呵呵 小我的python的反shell的代码 #!/usr/bin/python # Python Connect-back Bac...

python遍历序列enumerate函数浅析

enumerate函数用于遍历序列中的元素以及它们的下标。 enumerate函数说明: 函数原型:enumerate(sequence, [start=0]) 功能:将可循环序列seq...

python实现Flappy Bird源码

python实现Flappy Bird源码

Flappy Bird是前段时间(好像一年or两年前....)特别火的有一个小游戏,相信大家都玩过。 Flappy Bird操作简单,通过点击手机屏幕使Bird上升,穿过柱状障碍物之后得...

python ansible服务及剧本编写

python ansible服务及剧本编写

第1章 ansible软件概念说明 python语言是运维人员必会的语言,而ansible是一个基于Python开发的自动化运维工具 (saltstack)。其功能实现基于SSH远程连接...

Python Paramiko模块的安装与使用详解

一、前言 常见的解决方法都会需要对远程服务器必要的配置,如果远程服务器只有一两台还好说,如果有N台,还需要逐台进行配置,或者需要使用代码进行以上操作时,上面的办法就不太方便了。而使用pa...