pytorch 共享参数的示例

yipeiwu_com6年前Python基础

在很多神经网络中,往往会出现多个层共享一个权重的情况,pytorch可以快速地处理权重共享问题。

例子1:

class ConvNet(nn.Module):
  def __init__(self):
    super(ConvNet, self).__init__()
    self.conv_weight = nn.Parameter(torch.randn(3, 3, 5, 5))
 
  def forward(self, x):
    x = nn.functional.conv2d(x, self.conv_weight, bias=None, stride=1, padding=2, dilation=1, groups=1)
    x = nn.functional.conv2d(x, self.conv_weight.transpose(2, 3).contiguous(), bias=None, stride=1, padding=0, dilation=1,
                 groups=1)
    return x

上边这段程序定义了两个卷积层,这两个卷积层共享一个权重conv_weight,第一个卷积层的权重是conv_weight本身,第二个卷积层是conv_weight的转置。注意在gpu上运行时,transpose()后边必须加上.contiguous()使转置操作连续化,否则会报错。

例子2:

class LinearNet(nn.Module):
  def __init__(self):
    super(LinearNet, self).__init__()
    self.linear_weight = nn.Parameter(torch.randn(3, 3))
 
  def forward(self, x):
    x = nn.functional.linear(x, self.linear_weight)
    x = nn.functional.linear(x, self.linear_weight.t())
 
    return x

这个网络实现了一个双层感知器,权重同样是一个parameter的本身及其转置。

例子3:

class LinearNet2(nn.Module):
  def __init__(self):
    super(LinearNet2, self).__init__()
    self.w = nn.Parameter(torch.FloatTensor([[1.1,0,0], [0,1,0], [0,0,1]]))
 
  def forward(self, x):
    x = x.mm(self.w)
    x = x.mm(self.w.t())
    return x

这个方法直接用mm函数将x与w相乘,与上边的网络效果相同。

以上这篇pytorch 共享参数的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

windows下安装Python虚拟环境virtualenvwrapper-win

1、安装 执行命令 pip install virtualenv 为了使用virtualenv更方便,可以借助 virtualenvwrapper 执行命令 pip install vi...

Python使用matplotlib绘制随机漫步图

Python使用matplotlib绘制随机漫步图

本文我们来做一个简单的随机漫步数据图,进一步了解matplotlib的使用, 使用Python生成随机漫步数据,再使用matplotlib绘制出来, 随机漫步是这样行走得到的路径: 每次...

python实现抽奖小程序

本文实例为大家分享了python实现抽奖小程序的具体代码,供大家参考,具体内容如下 设计一个抽奖服务  背景:有x个奖品,要求在y天内发完;每天至少发放z个奖品;每天抽奖人数...

Python3.2模拟实现webqq登录

这是我最初学习时自己做的一个python模拟登录webqq的实例代码,具体代码如下 import hashlib from urllib import request,parse f...

Python简单计算数组元素平均值的方法示例

Python简单计算数组元素平均值的方法示例

本文实例讲述了Python简单计算数组元素平均值的方法。分享给大家供大家参考,具体如下: Python 环境:Python 2.7.12 x64 IDE :  &nb...