pytorch 共享参数的示例

yipeiwu_com5年前Python基础

在很多神经网络中,往往会出现多个层共享一个权重的情况,pytorch可以快速地处理权重共享问题。

例子1:

class ConvNet(nn.Module):
  def __init__(self):
    super(ConvNet, self).__init__()
    self.conv_weight = nn.Parameter(torch.randn(3, 3, 5, 5))
 
  def forward(self, x):
    x = nn.functional.conv2d(x, self.conv_weight, bias=None, stride=1, padding=2, dilation=1, groups=1)
    x = nn.functional.conv2d(x, self.conv_weight.transpose(2, 3).contiguous(), bias=None, stride=1, padding=0, dilation=1,
                 groups=1)
    return x

上边这段程序定义了两个卷积层,这两个卷积层共享一个权重conv_weight,第一个卷积层的权重是conv_weight本身,第二个卷积层是conv_weight的转置。注意在gpu上运行时,transpose()后边必须加上.contiguous()使转置操作连续化,否则会报错。

例子2:

class LinearNet(nn.Module):
  def __init__(self):
    super(LinearNet, self).__init__()
    self.linear_weight = nn.Parameter(torch.randn(3, 3))
 
  def forward(self, x):
    x = nn.functional.linear(x, self.linear_weight)
    x = nn.functional.linear(x, self.linear_weight.t())
 
    return x

这个网络实现了一个双层感知器,权重同样是一个parameter的本身及其转置。

例子3:

class LinearNet2(nn.Module):
  def __init__(self):
    super(LinearNet2, self).__init__()
    self.w = nn.Parameter(torch.FloatTensor([[1.1,0,0], [0,1,0], [0,0,1]]))
 
  def forward(self, x):
    x = x.mm(self.w)
    x = x.mm(self.w.t())
    return x

这个方法直接用mm函数将x与w相乘,与上边的网络效果相同。

以上这篇pytorch 共享参数的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在django admin中添加自定义视图的例子

django admin提供了完善的用户管理和数据模型管理,方便实用。研究了一下在admin里面添加自己的页面。 在admin.py里继承django.contrib.admin.Mod...

python 实现将多条曲线画在一幅图上的方法

python 实现将多条曲线画在一幅图上的方法

如下所示: # -*- coding: utf-8 -*- """ Created on Thu Jun 07 09:17:40 2018 @author: yjp """ imp...

详解Python用三种方式统计词频的方法

三种方法: ①直接使用dict ②使用defaultdict ③使用Counter  ps:`int()`函数默认返回0  ①dict text = "I'm a...

Python3读取UTF-8文件及统计文件行数的方法

本文实例讲述了Python3读取UTF-8文件及统计文件行数的方法。分享给大家供大家参考。具体实现方法如下: ''''' Created on Dec 21, 2012 Pyth...

Python 实现 贪吃蛇大作战 代码分享

Python 实现 贪吃蛇大作战 代码分享

感觉游戏审核新政实施后,国内手游市场略冷清,是不是各家的新游戏都在排队等审核。媒体们除了之前竞相追捧《Pokemon Go》热闹了一把,似乎也听不到什么声音了。直到最近几天,突然听见好...