pytorch 共享参数的示例

yipeiwu_com5年前Python基础

在很多神经网络中,往往会出现多个层共享一个权重的情况,pytorch可以快速地处理权重共享问题。

例子1:

class ConvNet(nn.Module):
  def __init__(self):
    super(ConvNet, self).__init__()
    self.conv_weight = nn.Parameter(torch.randn(3, 3, 5, 5))
 
  def forward(self, x):
    x = nn.functional.conv2d(x, self.conv_weight, bias=None, stride=1, padding=2, dilation=1, groups=1)
    x = nn.functional.conv2d(x, self.conv_weight.transpose(2, 3).contiguous(), bias=None, stride=1, padding=0, dilation=1,
                 groups=1)
    return x

上边这段程序定义了两个卷积层,这两个卷积层共享一个权重conv_weight,第一个卷积层的权重是conv_weight本身,第二个卷积层是conv_weight的转置。注意在gpu上运行时,transpose()后边必须加上.contiguous()使转置操作连续化,否则会报错。

例子2:

class LinearNet(nn.Module):
  def __init__(self):
    super(LinearNet, self).__init__()
    self.linear_weight = nn.Parameter(torch.randn(3, 3))
 
  def forward(self, x):
    x = nn.functional.linear(x, self.linear_weight)
    x = nn.functional.linear(x, self.linear_weight.t())
 
    return x

这个网络实现了一个双层感知器,权重同样是一个parameter的本身及其转置。

例子3:

class LinearNet2(nn.Module):
  def __init__(self):
    super(LinearNet2, self).__init__()
    self.w = nn.Parameter(torch.FloatTensor([[1.1,0,0], [0,1,0], [0,0,1]]))
 
  def forward(self, x):
    x = x.mm(self.w)
    x = x.mm(self.w.t())
    return x

这个方法直接用mm函数将x与w相乘,与上边的网络效果相同。

以上这篇pytorch 共享参数的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python基于动态规划算法计算单词距离

本文实例讲述了Python基于动态规划算法计算单词距离。分享给大家供大家参考。具体如下: #!/usr/bin/env python #coding=utf-8 def word_d...

python 3.7.0 下pillow安装方法

python 3.7.0 下pillow安装方法

PIL(Python Imaging Library)是Python中一个强大的图像处理库,但目前其只支持到Python2.7 pillow是PIL的一个分支,虽是分支但是其与PIL同样...

Python利用IPython提高开发效率

Python利用IPython提高开发效率

一、IPython 简介 IPython 是一个交互式的 Python 解释器,而且它更加高效。 它和大多传统工作模式(编辑 -> 编译 -> 运行)不同的是, 它采用的工...

Python文件读写常见用法总结

1. 读取文件 # !/usr/bin/env python # -*- coding:utf-8 -*- """ 文件读取三步骤: 1.打开文件 f=open(file...

Django model 中设置联合约束和联合索引的方法

在Django model中对一张表的几个字段进行联合约束和联合索引,例如在购物车表中,登录的用户和商品两个字段在一起表示唯一记录。 举个栗子: Django model中购物车表...