Python统计纯文本文件中英文单词出现个数的方法总结【测试可用】

yipeiwu_com5年前Python基础

本文实例讲述了Python统计纯文本文件中英文单词出现个数的方法。分享给大家供大家参考,具体如下:

第一版: 效率低

# -*- coding:utf-8 -*-
#!python3
path = 'test.txt'
with open(path,encoding='utf-8',newline='') as f:
  word = []
  words_dict= {}
  for letter in f.read():
    if letter.isalnum():
      word.append(letter)
    elif letter.isspace(): #空白字符 空格 \t \n
      if word:
        word = ''.join(word).lower() #转小写
        if word not in words_dict:
          words_dict[word] = 1
        else:
          words_dict[word] += 1
        word = []
#处理最后一个单词
if word:
  word = ''.join(word).lower() # 转小写
  if word not in words_dict:
    words_dict[word] = 1
  else:
    words_dict[word] += 1
  word = []
for k,v in words_dict.items():
  print(k,v)

运行结果:

we 4
are 1
busy 1
all 1
day 1
like 1
swarms 1
of 6
flies 1
without 1
souls 1
noisy 1
restless 1
unable 1
to 1
hear 1
the 7
voices 1
soul 1
as 1
time 1
goes 1
by 1
childhood 1
away 2
grew 1
up 1
years 1
a 1
lot 1
memories 1
once 1
have 2
also 1
eroded 1
bottom 1
childish 1
innocence 1
regardless 1
shackles 1
mind 1
indulge 1
in 1
world 1
buckish 1
focus 1
on 1
beneficial 1
principle 1
lost 1
themselves 1

第二版:

缺点:遇到大文件要一次读入内存,性能不好

# -*- coding:utf-8 -*-
#!python3
import re
path = 'test.txt'
with open(path,'r',encoding='utf-8') as f:
  data = f.read()
  word_reg = re.compile(r'\w+')
  #word_reg = re.compile(r'\w+\b')
  word_list = word_reg.findall(data)
  word_list = [word.lower() for word in word_list] #转小写
  word_set = set(word_list) #避免重复查询
  # words_dict = {}
  # for word in word_set:
  #   words_dict[word] = word_list.count(word)
  # 简洁写法
  words_dict = {word: word_list.count(word) for word in word_set}
  for k,v in words_dict.items():
    print(k,v)

运行结果:

on 1
also 1
souls 1
focus 1
soul 1
time 1
noisy 1
grew 1
lot 1
childish 1
like 1
voices 1
indulge 1
swarms 1
buckish 1
restless 1
we 4
hear 1
childhood 1
as 1
world 1
themselves 1
are 1
bottom 1
memories 1
the 7
of 6
flies 1
without 1
have 2
day 1
busy 1
to 1
eroded 1
regardless 1
unable 1
innocence 1
up 1
a 1
in 1
mind 1
goes 1
by 1
lost 1
principle 1
once 1
away 2
years 1
beneficial 1
all 1
shackles 1

第三版:

# -*- coding:utf-8 -*-
#!python3
import re
path = 'test.txt'
with open(path, 'r', encoding='utf-8') as f:
  word_list = []
  word_reg = re.compile(r'\w+')
  for line in f:
    #line_words = word_reg.findall(line)
    #比上面的正则更加简单
    line_words = line.split()
    word_list.extend(line_words)
  word_set = set(word_list) # 避免重复查询
  words_dict = {word: word_list.count(word) for word in word_set}
  for k, v in words_dict.items():
    print(k, v)

运行结果:

childhood 1
innocence, 1
are 1
of 6
also 1
lost 1
We 1
regardless 1
noisy, 1
by, 1
on 1
themselves. 1
grew 1
lot 1
bottom 1
buckish, 1
time 1
childish 1
voices 1
once 1
restless, 1
shackles 1
world 1
eroded 1
As 1
all 1
day, 1
swarms 1
we 3
soul. 1
memories, 1
in 1
without 1
like 1
beneficial 1
up, 1
unable 1
away 1
flies 1
goes 1
a 1
have 2
away, 1
mind, 1
focus 1
principle, 1
hear 1
to 1
the 7
years 1
busy 1
souls, 1
indulge 1

第四版:使用Counter统计

# -*- coding:utf-8 -*-
#!python3
import collections
import re
path = 'test.txt'
with open(path, 'r', encoding='utf-8') as f:
  word_list = []
  word_reg = re.compile(r'\w+')
  for line in f:
    line_words = line.split()
    word_list.extend(line_words)
  words_dict = dict(collections.Counter(word_list)) #使用Counter统计
  for k, v in words_dict.items():
    print(k, v)

运行结果:

We 1
are 1
busy 1
all 1
day, 1
like 1
swarms 1
of 6
flies 1
without 1
souls, 1
noisy, 1
restless, 1
unable 1
to 1
hear 1
the 7
voices 1
soul. 1
As 1
time 1
goes 1
by, 1
childhood 1
away, 1
we 3
grew 1
up, 1
years 1
away 1
a 1
lot 1
memories, 1
once 1
have 2
also 1
eroded 1
bottom 1
childish 1
innocence, 1
regardless 1
shackles 1
mind, 1
indulge 1
in 1
world 1
buckish, 1
focus 1
on 1
beneficial 1
principle, 1
lost 1
themselves. 1

注:这里使用的测试文本test.txt如下:

We are busy all day, like swarms of flies without souls, noisy, restless, unable to hear the voices of the soul. As time goes by, childhood away, we grew up, years away a lot of memories, once have also eroded the bottom of the childish innocence, we regardless of the shackles of mind, indulge in the world buckish, focus on the beneficial principle, we have lost themselves.

PS:这里再为大家推荐2款相关统计工具供大家参考:

在线字数统计工具:
http://tools.jb51.net/code/zishutongji

在线字符统计与编辑工具:
http://tools.jb51.net/code/char_tongji

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python文件与目录操作技巧汇总》、《Python文本文件操作技巧汇总》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

python操作xml文件详细介绍

关于python读取xml文章很多,但大多文章都是贴一个xml文件,然后再贴个处理文件的代码。这样并不利于初学者的学习,希望这篇文章可以更通俗易懂的教如何使用python 来读取xml...

Django objects的查询结果转化为json的三种方式的方法

Django objects的查询结果转化为json的三种方式的方法

第一种方式: 利用seriallizers 这个方法,官网的解释说:将复杂的数据结构变成json、xml或者其他的格式 import json from django.core...

详解字典树Trie结构及其Python代码实现

字典树(Trie)可以保存一些字符串->值的对应关系。基本上,它跟 Java 的 HashMap 功能相同,都是 key-value 映射,只不过 Trie 的 key 只能是字符...

win10系统下Anaconda3安装配置方法图文教程

win10系统下Anaconda3安装配置方法图文教程

本文主要介绍在 windows 10 系统中安装 Anaconda3 的详细过程。 下载 Anaconda 官网下载地址 目前最新版本是 python 3.6,默认下载也是 Python...

详解DeBug Python神级工具PySnooper

PySnooper 在 GitHub 上自嘲是一个“乞丐版”调试工具(poor man's debugger)。 一般情况下,在编写 Python 代码时,如果想弄清楚为什么 Pytho...