对python多线程中互斥锁Threading.Lock的简单应用详解

yipeiwu_com6年前Python基础

一、线程共享进程资源

每个线程互相独立,相互之间没有任何关系,但是在同一个进程中的资源,线程是共享的,如果不进行资源的合理分配,对数据造成破坏,使得线程运行的结果不可预期。这种现象称为“线程不安全”。

实例如下:

#-*- coding: utf-8 -*-
import threading
import time
 
def test_xc():
  f = open("test.txt","a")
  f.write("test_dxc"+'\n')
  time.sleep(1)
  f.close()
 
if __name__ == '__main__':
  for i in xrange(5):
    t = threading.Thread(target=test_xc)
    t.start()

结果展示:

python多线程中互斥锁Threading.Lock

二、互斥锁同步

线程同步能够保证多个线程安全访问竞争资源,最简单的同步机制是引入互斥锁。互斥锁为资源引入一个状态:锁定/非锁定。某个线程要更改共享数据时,先将其锁定,此时资源的状态为“锁定”,其他线程不能更改;直到该线程释放资源,将资源的状态变成“非锁定”,其他的线程才能再次锁定该资源。互斥锁保证了每次只有一个线程进行写入操作,从而保证了多线程情况下数据的正确性。

threading模块中定义了Lock类,可以方便的处理锁定:

#创建锁
mutex = threading.Lock()
#锁定
mutex.acquire([timeout])#timeout是超时时间
#释放
mutex.release()

其中,锁定方法acquire可以有一个超时时间的可选参数timeout。如果设定了timeout,则在超时后通过返回值可以判断是否得到了锁,从而可以进行一些其他的处理。

三、使用线程锁

<pre name="code" class="python">#-*- coding: utf-8 -*-
import threading
import time
 
def test_xc():
  f = open("test.txt","a")
  f.write("test_dxc"+'\n')
  time.sleep(1)
  mutex.acquire()#取得锁
  f.close()
  mutex.release()#释放锁
 
if __name__ == '__main__':
  mutex = threading.Lock()#创建锁
  for i in xrange(5):
    t = threading.Thread(target=test_xc)
    t.start()

运行结果

python多线程中互斥锁Threading.Lock

以上这篇对python多线程中互斥锁Threading.Lock的简单应用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django ImageFiled上传照片并显示的方法

1:首先理解settings.py中 MEDIA_ROOT: MEDIA_URL:这两者之间的关系。 MEDIA_ROOT:就是保存上传图片的根目录,比如说MEIDA_ROOT ="C:...

python构建自定义回调函数详解

回调函数用起来比较爽。特别是在js中,满世界全是回调,那么在python中,怎么来优雅地实现自己的回调函数呢 下面贴一个我写的例子 class BaseHandler(object)...

python绘制彩虹图

python绘制彩虹图

本文实例为大家分享了python绘制彩虹图的具体代码,供大家参考,具体内容如下 from turtle import * #控制彩虹路径 def path(pen, r, g,...

Python函数式编程指南(三):迭代器详解

3. 迭代器 3.1. 迭代器(Iterator)概述 迭代器是访问集合内元素的一种方式。迭代器对象从集合的第一个元素开始访问,直到所有的元素都被访问一遍后结束。 迭代器不能回退,只能往...

如何通过python画loss曲线的方法

如何通过python画loss曲线的方法

1. 首先导入一些python画图的包,读取txt文件,假设我现在有两个模型训练结果的records.txt文件 import numpy as np import matplotl...