基于python读取.mat文件并取出信息

yipeiwu_com5年前Python基础

这篇文章主要介绍了基于python读取.mat文件并取出信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

导入所需包

from scipy.io import loadmat

读取.mat文件

随便从下面文件里读取一个:

m = loadmat('H_BETA.mat') # 读出来的 m 是一个dict(字典)数据结构

读出来的m内容:

m:{'__header__': b'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Mon Aug 5 17:14:09 2019',
 '__version__': '1.0',
 '__globals__': [],
 'H_BETA': array([[ 0.68508148, 0.36764355, 0.73505849, ..., 0.27600164,
     0.67968929, 0.70506438],
    [ 0.74920812, 1.10949748, 0.47506305, ..., 0.32871445,
     0.61247345, 1.06948844],
    [ 0.83311522, 1.06321302, 0.97364609, ..., 0.85837753,
     0.96296771, 1.46095171],
    ...,
    [    nan,     nan,     nan, ...,     nan,
         nan, -9.04648469],
    [    nan,     nan,     nan, ...,     nan,
         nan,     nan],
    [    nan,     nan,     nan, ...,     nan,
In [29]: m.keys()
Out[29]: dict_keys(['__header__', '__version__', '__globals__', 'H_BETA'])

取出.mat里所需信息

.mat 文件里的数据结构是 dict ,所以取值要按照 key:value 的形式:

In [30]: m['H_BETA']
Out[30]:
array([[ 0.68508148, 0.36764355, 0.73505849, ..., 0.27600164,
     0.67968929, 0.70506438],
    [ 0.74920812, 1.10949748, 0.47506305, ..., 0.32871445,
     0.61247345, 1.06948844],
    [ 0.83311522, 1.06321302, 0.97364609, ..., 0.85837753,
     0.96296771, 1.46095171],
    ...,
    [    nan,     nan,     nan, ...,     nan,
        nan, -9.04648469],
    [    nan,     nan,     nan, ...,     nan,
        nan,     nan],
    [    nan,     nan,     nan, ...,     nan,
        nan,     nan]])

In [31]: type(m['H_BETA'])
Out[31]: numpy.ndarray

预处理数据

上面读出来的数据是 ndarray 类型,为了方便数据的展示,我们可以将其转换为,pandas的DataFrame:

In [32]: import pandas as pd
In [33]: df = pd.DataFrame(m['H_BETA'])
In [34]: df.head()
Out[34]:
    1     2     3     4     5     6     7     8     9     10  
 0.685081 0.367644 0.735058 0.085046 0.104332 0.560731 0.350219 0.758185 0.303823 0.114022 0.452877 
 0.749208 1.109497 0.475063 0.896100 1.117772 0.611356 0.662669 0.603077 0.863930 0.756870 0.725808 
 0.833115 1.063213 0.973646 0.935061 0.631670 0.916800 0.662993 0.543231 0.671558 1.027954 0.526402 
 0.488906 0.932741 0.956622 0.573116 0.893764 0.987304 0.380807 1.211157 0.550213 0.898408 1.153289 
 0.440694 0.503209 0.509693 0.477054 0.344717 -0.054662 1.124213 0.344906 0.612898 0.217625 -0.129715 

[5 rows x 2111 columns]

如此,数据就比较规整了,是保存成文件,还是做其他处理,就by yourself啦!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python从入门到精通(DAY 1)

python从入门到精通(DAY 1)

1、要点    (1) 在C语言中没有字符串,只有字符,    在python中的字符串hello,在C语言中是以字符数组在内存存放['h','e...

pyqt5 删除layout中的所有widget方法

如下所示: >>> for i in range(self.gridLayout.count()): >>> self.gridLayout.i...

解决Python二维数组赋值问题

解决Python二维数组赋值问题

当我们采用s=[[0]*3]*2初始化一个数组,然后对s[0][0]进行赋值,改变的是第一列所有的值。因为用s = [[0]*3]*2 初始化数组,他表示的是指向这个列表的引用,所以当你...

Python 经典面试题 21 道【不可错过】

到底什么是Python? •Python是一种解释性语言。Python代码在运行之前不需要编译。其它解释性语言还包括PHP和Ruby。 •Python是...

Python 实现还原已撤回的微信消息

Python 实现还原已撤回的微信消息

导包效果展示 以下截图显示的撤回消息类型依次是文字消息、微信自带表情、图片、语音、定位地图、名片、公众号文章、音乐、视频。有群里撤回的,也有个人号撤回的。 图文来源:http://kk...