基于python读取.mat文件并取出信息

yipeiwu_com6年前Python基础

这篇文章主要介绍了基于python读取.mat文件并取出信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

导入所需包

from scipy.io import loadmat

读取.mat文件

随便从下面文件里读取一个:

m = loadmat('H_BETA.mat') # 读出来的 m 是一个dict(字典)数据结构

读出来的m内容:

m:{'__header__': b'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Mon Aug 5 17:14:09 2019',
 '__version__': '1.0',
 '__globals__': [],
 'H_BETA': array([[ 0.68508148, 0.36764355, 0.73505849, ..., 0.27600164,
     0.67968929, 0.70506438],
    [ 0.74920812, 1.10949748, 0.47506305, ..., 0.32871445,
     0.61247345, 1.06948844],
    [ 0.83311522, 1.06321302, 0.97364609, ..., 0.85837753,
     0.96296771, 1.46095171],
    ...,
    [    nan,     nan,     nan, ...,     nan,
         nan, -9.04648469],
    [    nan,     nan,     nan, ...,     nan,
         nan,     nan],
    [    nan,     nan,     nan, ...,     nan,
In [29]: m.keys()
Out[29]: dict_keys(['__header__', '__version__', '__globals__', 'H_BETA'])

取出.mat里所需信息

.mat 文件里的数据结构是 dict ,所以取值要按照 key:value 的形式:

In [30]: m['H_BETA']
Out[30]:
array([[ 0.68508148, 0.36764355, 0.73505849, ..., 0.27600164,
     0.67968929, 0.70506438],
    [ 0.74920812, 1.10949748, 0.47506305, ..., 0.32871445,
     0.61247345, 1.06948844],
    [ 0.83311522, 1.06321302, 0.97364609, ..., 0.85837753,
     0.96296771, 1.46095171],
    ...,
    [    nan,     nan,     nan, ...,     nan,
        nan, -9.04648469],
    [    nan,     nan,     nan, ...,     nan,
        nan,     nan],
    [    nan,     nan,     nan, ...,     nan,
        nan,     nan]])

In [31]: type(m['H_BETA'])
Out[31]: numpy.ndarray

预处理数据

上面读出来的数据是 ndarray 类型,为了方便数据的展示,我们可以将其转换为,pandas的DataFrame:

In [32]: import pandas as pd
In [33]: df = pd.DataFrame(m['H_BETA'])
In [34]: df.head()
Out[34]:
    1     2     3     4     5     6     7     8     9     10  
 0.685081 0.367644 0.735058 0.085046 0.104332 0.560731 0.350219 0.758185 0.303823 0.114022 0.452877 
 0.749208 1.109497 0.475063 0.896100 1.117772 0.611356 0.662669 0.603077 0.863930 0.756870 0.725808 
 0.833115 1.063213 0.973646 0.935061 0.631670 0.916800 0.662993 0.543231 0.671558 1.027954 0.526402 
 0.488906 0.932741 0.956622 0.573116 0.893764 0.987304 0.380807 1.211157 0.550213 0.898408 1.153289 
 0.440694 0.503209 0.509693 0.477054 0.344717 -0.054662 1.124213 0.344906 0.612898 0.217625 -0.129715 

[5 rows x 2111 columns]

如此,数据就比较规整了,是保存成文件,还是做其他处理,就by yourself啦!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

安装好Pycharm后如何配置Python解释器简易教程

安装好Pycharm后如何配置Python解释器简易教程

这两天有许多Python小白加入学习群,并且问了许多关于Pycharm基本使用的问题,今天小编就以配置Python解释器的问题给大家简单絮叨一下。 1、一般来说,当我们启动Pycharm...

使用Python脚本生成随机IP的简单方法

需求 在某应用中,需要根据一定的规则生成随机的IP地址,规则类似于192.168.11.0/24这样的CIDR形式给出。 实现 经过艰苦卓绝的调试,下面的代码是可以用的: RAND...

django开发教程之利用缓存文件进行页面缓存的方法

django开发教程之利用缓存文件进行页面缓存的方法

前言 由于Django是动态网站,所有每次请求均会去数据进行相应的操作,当程序访问量大时,耗时必然会更加明显,最简单解决方式是使用:缓存,缓存将一个某个views的返回值保存至内存或者R...

Numpy中转置transpose、T和swapaxes的实例讲解

利用Python进行数据分析时,Numpy是最常用的库,经常用来对数组、矩阵等进行转置等,有时候用来做数据的存储。 在numpy中,转置transpose和轴对换是很基本的操作,下面分别...

python中pip的使用和修改下载源的方法

基本命令 显示版本信息 pip -V 安装指定包 pip install <packages> pip install -i 'host' <package...