TensorFlow用expand_dim()来增加维度的方法

yipeiwu_com5年前Python基础

TensorFlow中,想要维度增加一维,可以使用tf.expand_dims(input, dim, name=None)函数。当然,我们常用tf.reshape(input, shape=[])也可以达到相同效果,但是有些时候在构建图的过程中,placeholder没有被feed具体的值,这时就会包下面的错误:TypeError: Expected binary or unicode string, got 1

在这种情况下,我们就可以考虑使用expand_dims来将维度加1。比如我自己代码中遇到的情况,在对图像维度降到二维做特定操作后,要还原成四维[batch, height, width, channels],前后各增加一维。如果用reshape,则因为上述原因报错

one_img2 = tf.reshape(one_img, shape=[1, one_img.get_shape()[0].value, one_img.get_shape()[1].value, 1])

用下面的方法可以实现:

one_img = tf.expand_dims(one_img, 0)
one_img = tf.expand_dims(one_img, -1) #-1表示最后一维

在最后,给出官方的例子和说明

# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]

# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

Args:

input: A Tensor.
dim: A Tensor. Must be one of the following types: int32, int64. 0-D (scalar). Specifies the dimension index at which to expand the shape of input.
name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Contains the same data as input, but its shape has an additional dimension of size 1 added.

以上这篇TensorFlow用expand_dim()来增加维度的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Tensorflow将自己的数据分割成batch训练实例

使用Tensorflow将自己的数据分割成batch训练实例

学习神经网络的时候,网上的数据集已经分割成了batch,训练的时候直接使用batch.next()就可以获取batch,但是有的时候需要使用自己的数据集,然而自己的数据集不是batch形...

python函数装饰器之带参数的函数和带参数的装饰器用法示例

本文实例讲述了python函数装饰器之带参数的函数和带参数的装饰器用法。分享给大家供大家参考,具体如下: 1. 函数带多个参数 # 普通的装饰器, 打印函数的运行时间 def dec...

Python 保持登录状态进行接口测试的方法示例

记录三种添加cookie保持接口登录状态的方法,方便自己回顾。 1.简单粗暴式。 此方法比较小白,前提是已经通过fiddler抓包等方式拿到了cookie,然后直接塞进去。 impo...

python比较两个列表大小的方法

本文实例讲述了python比较两个列表大小的方法。分享给大家供大家参考。具体如下: L1 = [1, ('a', 3)] L2 = [1, ('a', 2)] print L1 &l...

python中__call__方法示例分析

本文实例讲述了python中__call__方法的用法,分享给大家供大家参考。具体方法分析如下: Python中的__call__允许程序员创建可调用的对象(实例),默认情况下, __c...