TensorFlow用expand_dim()来增加维度的方法

yipeiwu_com6年前Python基础

TensorFlow中,想要维度增加一维,可以使用tf.expand_dims(input, dim, name=None)函数。当然,我们常用tf.reshape(input, shape=[])也可以达到相同效果,但是有些时候在构建图的过程中,placeholder没有被feed具体的值,这时就会包下面的错误:TypeError: Expected binary or unicode string, got 1

在这种情况下,我们就可以考虑使用expand_dims来将维度加1。比如我自己代码中遇到的情况,在对图像维度降到二维做特定操作后,要还原成四维[batch, height, width, channels],前后各增加一维。如果用reshape,则因为上述原因报错

one_img2 = tf.reshape(one_img, shape=[1, one_img.get_shape()[0].value, one_img.get_shape()[1].value, 1])

用下面的方法可以实现:

one_img = tf.expand_dims(one_img, 0)
one_img = tf.expand_dims(one_img, -1) #-1表示最后一维

在最后,给出官方的例子和说明

# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]

# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

Args:

input: A Tensor.
dim: A Tensor. Must be one of the following types: int32, int64. 0-D (scalar). Specifies the dimension index at which to expand the shape of input.
name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Contains the same data as input, but its shape has an additional dimension of size 1 added.

以上这篇TensorFlow用expand_dim()来增加维度的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Python实现进度条的4种方式

详解Python实现进度条的4种方式

这里只列举了部分方法,其他方法或python库暂时还没使用到 1.不用库,直接打印: 代码样例: import time #demo1 def process_bar(percent...

Python弹出输入框并获取输入值的实例

使用自带的Tkinter模块,简单的弹输入框示例,返回输入值 from Tkinter import * import tkMessageBox def getInput(t...

Python XML转Json之XML2Dict的使用方法

1. Json读写方法 def parseFromFile(self, fname): """ Overwritten to read JSON files. """...

详解小白之KMP算法及python实现

详解小白之KMP算法及python实现

在看子串匹配问题的时候,书上的关于KMP的算法的介绍总是理解不了。看了一遍代码总是很快的忘掉,后来决定好好分解一下KMP算法,算是给自己加深印象。 在将KMP字串匹配问题的时候,我们先来...

Django用户认证系统 Web请求中的认证解析

在每个Web请求中都提供一个 request.user 属性来表示当前用户。如果当前用户未登录,则该属性为AnonymousUser的一个实例,反之,则是一个User实例。 你可以通过i...