TensorFlow用expand_dim()来增加维度的方法

yipeiwu_com5年前Python基础

TensorFlow中,想要维度增加一维,可以使用tf.expand_dims(input, dim, name=None)函数。当然,我们常用tf.reshape(input, shape=[])也可以达到相同效果,但是有些时候在构建图的过程中,placeholder没有被feed具体的值,这时就会包下面的错误:TypeError: Expected binary or unicode string, got 1

在这种情况下,我们就可以考虑使用expand_dims来将维度加1。比如我自己代码中遇到的情况,在对图像维度降到二维做特定操作后,要还原成四维[batch, height, width, channels],前后各增加一维。如果用reshape,则因为上述原因报错

one_img2 = tf.reshape(one_img, shape=[1, one_img.get_shape()[0].value, one_img.get_shape()[1].value, 1])

用下面的方法可以实现:

one_img = tf.expand_dims(one_img, 0)
one_img = tf.expand_dims(one_img, -1) #-1表示最后一维

在最后,给出官方的例子和说明

# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]

# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]

Args:

input: A Tensor.
dim: A Tensor. Must be one of the following types: int32, int64. 0-D (scalar). Specifies the dimension index at which to expand the shape of input.
name: A name for the operation (optional).

Returns:

A Tensor. Has the same type as input. Contains the same data as input, but its shape has an additional dimension of size 1 added.

以上这篇TensorFlow用expand_dim()来增加维度的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python文本处理之按行处理大文件的方法

以行的形式读出一个文件最简单的方式是使用文件对象的readline()、readlines()和xreadlines()方法。 Python2.2+为这种频繁的操作提供了一个简化的语法—...

anaconda如何查看并管理python环境

anaconda如何查看并管理python环境

Anaconda是Python的一个开源发行版本,主要面向科学计算,预装了丰富强大的库。 使用Anaconda可以轻松管理多个版本的Python环境。 Download:https://...

python将控制台输出保存至文件的方法

很多时候在Linux系统下运行python程序时,控制台会输出一些有用的信息。为了方便保存这些信息,有时需要对这些信息进行保存。这里介绍几种将控制台输出保存到文件中的方式: 1 重定向标...

python 使用值来排序一个字典的方法

下面先看下python 使用值排序字典的方法 In [8]: a={'x':11,'y':22,'c':4} In [9]: import operator In [10]: sor...

pytorch 实现打印模型的参数值

pytorch 实现打印模型的参数值

对于简单的网络 例如全连接层Linear 可以使用以下方法打印linear层: fc = nn.Linear(3, 5) params = list(fc.named_paramet...