pandas实现to_sql将DataFrame保存到数据库中

yipeiwu_com6年前Python基础

目的

在数据分析时,我们有中间结果,或者最终的结果,需要保存到数据库中;或者我们有一个中间的结果,如果放到数据库中通过sql操作会更加的直观,处理后再将结果读取到DataFrame中。这两个场景,就需要用到DataFrame的to_sql操作。

具体的操作

连接数据库代码

import pandas as pd
from sqlalchemy import create_engine
# default
engine = create_engine('mysql+pymysql://ledao:ledao123@localhost/pandas_learn')
original_data = pd.read_sql_table('cellfee', engine)
original_data

结果如下所示。

对数据进行汇总,每个小区的电费进行求和放到Series中,然后将所有小区的总电费放到DataFrame中,最后将DataFrame保存到数据库中,代码如下所示。

all_cells = []
for k, v in original_data.groupby(by=['cityid', 'cellid']):
onecell = pd.Series(data=[k[0], k[1], v['fee'].sum()], index=['cityid', 'cellid', 'fee_sum'])
all_cells.append(onecell)
all_cells = pd.DataFrame(all_cells)
all_cells.to_sql(name='cells_fee', con=engine, chunksize=1000, if_exists='replace', index=None)

对于DataFrame的to_sql函数,需要注意的参数在代码中已经写出来,其中比较重要的是chunksize、if_exists和index。
chunksize可以设置一次入库的大小;if_exists设置如果数据库中存在同名表怎么办,‘replace'表示将表原来数据删除放入当前数据;‘append'表示追加;‘fail'则表示将抛出异常,结束操作,默认是‘fail';index=接受boolean值,表示是否将DataFrame的index也作为表的列存储。

最终存表的结果如下图所示。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python生成MD5值的两种方法实例分析

本文实例讲述了Python生成MD5值的两种方法。分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- import datetime # NO.1 使用M...

Python探索之SocketServer详解

SocketServer,网络通信服务器,是Python标准库中的一个模块,其作用是创建网络服务器。SocketServer模块定义了一些类来处理诸如TCP、UDP、UNIX流和UNIX...

对python的unittest架构公共参数token提取方法详解

额。。。每个请求都有token值的传入,但是token非常易变,一旦变化,所有的接口用例都得改一遍token,工作量太大了。。。 那么有没有一种方法能把token提取出来,作为一个全局变...

Django中针对基于类的视图添加csrf_exempt实例代码

在Django中对于基于函数的视图我们可以 @csrf_exempt 注解来标识一个视图可以被跨域访问。那么对于基于类的视图,我们应该怎么办呢? 简单来说可以有两种访问来解决 方法一 在...

Python设置在shell脚本中自动补全功能的方法

本篇博客将会简短的介绍,如何在ubuntu中设置python自动补全功能。 需求:由于python中的内建函数较多,我们在百纳乘时,可能记不清函数的名字,同时自动补全功能,加快了我们开发...