PyTorch读取Cifar数据集并显示图片的实例讲解

yipeiwu_com6年前Python基础

首先了解一下需要的几个类所在的package

from torchvision import transforms, datasets as ds
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np

#transform = transforms.Compose是把一系列图片操作组合起来,比如减去像素均值等。
#DataLoader读入的数据类型是PIL.Image
#这里对图片不做任何处理,仅仅是把PIL.Image转换为torch.FloatTensor,从而可以被pytorch计算
transform = transforms.Compose(
 [
 transforms.ToTensor()
 ]
)

Step 1,得到torch.utils.data.Dataset实例。

torch.utils.data.Dataset是一个抽象类,CIFAR100是它的一个实例化子类

train=True,读取训练集;train=False,读取测试集

download=False,不下载。如果为True,则先检查root下有无该数据集,如果没有就先下载。

train_set = ds.CIFAR100(root='.', train=True, transform=transform, target_transform=None, download=True)

Step 2,把Dataset封装成torch.utils.data.DataLoader

data_loader = DataLoader(dataset=train_set,
  batch_size=1,
  shuffle=False,
  num_workers=2)


# # 生成torch.utils.data.DataLoaderIter
# # 不过DataLoaderIter它会被DataLoader自动创建并且调用,我们用不到
# data_iter = iter(data_loader)
# images, labels = next(data_iter)

step 3,从DataLoader里读取数据,并将图片显示出来。

注意:

1)使用for...in...循环读取数据的时候,会自动调用DataLoader里的__next__()函数

而且只能对Tensor实例进行迭代,所以之前的transforms必须最后加一个transforms.ToTensor()

2)显示图片有两种方式:Image.show()和plt.imshow(ndarray)

Image.show():

通过transforms.ToPILImage()把FloatTensor转化为Image

plt.imshow(ndarray):

通过FloatTensor.numpy()转化为ndarray,再调用plt.imshow()

to_pil_image = transforms.ToPILImage()
cnt = 0
for image,label in data_loader:
 if cnt>=3: # 只显示3张图片
 break
 print(label) # 显示label

 # 方法1:Image.show()
 # transforms.ToPILImage()中有一句
 # npimg = np.transpose(pic.numpy(), (1, 2, 0))
 # 因此pic只能是3-D Tensor,所以要用image[0]消去batch那一维
 img = to_pil_image(image[0])
 img.show()

 # 方法2:plt.imshow(ndarray)
 img = image[0] # plt.imshow()只能接受3-D Tensor,所以也要用image[0]消去batch那一维
 img = img.numpy() # FloatTensor转为ndarray
 img = np.transpose(img, (1,2,0)) # 把channel那一维放到最后

 # 显示图片
 plt.imshow(img)
 plt.show()

 cnt += 1

另外补一句np.transpose()的用法。

第一个参数是要transpose的图片;

第二个是shape。比如一个ndarray是(channel, height, width),如果给第二个参数(height, width,channel),就会把第0维channel整个搬到最后。

以上这篇PyTorch读取Cifar数据集并显示图片的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现二分查找算法实例

本文实例讲述了Python实现二分查找算法的方法。分享给大家供大家参考。具体实现方法如下: #!/usr/bin/env python import sys def search2...

详解pytorch 0.4.0迁移指南

详解pytorch 0.4.0迁移指南

总说 由于pytorch 0.4版本更新实在太大了, 以前版本的代码必须有一定程度的更新. 主要的更新在于 Variable和Tensor的合并., 当然还有Windows的支持, 其他...

python中的RSA加密与解密实例解析

这篇文章主要介绍了python RSA加密与解密实现详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 什么是RSA: RSA公开密...

Python多线程原理与用法实例剖析

Python多线程原理与用法实例剖析

本文实例讲述了Python多线程原理与用法。分享给大家供大家参考,具体如下: 先来看个栗子: 下面来看一下I/O秘籍型的线程,举个栗子——爬虫,下面是爬下来的图片用4个线程去写文件...

django query模块

最近在接触一个Django项目,使用的是fbv( function-base views )模式,看起来特别不舒服,项目中有一个模型类117个字段,看我的有点晕,不过还是得干呀,生活呀,...