PyTorch读取Cifar数据集并显示图片的实例讲解

yipeiwu_com6年前Python基础

首先了解一下需要的几个类所在的package

from torchvision import transforms, datasets as ds
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np

#transform = transforms.Compose是把一系列图片操作组合起来,比如减去像素均值等。
#DataLoader读入的数据类型是PIL.Image
#这里对图片不做任何处理,仅仅是把PIL.Image转换为torch.FloatTensor,从而可以被pytorch计算
transform = transforms.Compose(
 [
 transforms.ToTensor()
 ]
)

Step 1,得到torch.utils.data.Dataset实例。

torch.utils.data.Dataset是一个抽象类,CIFAR100是它的一个实例化子类

train=True,读取训练集;train=False,读取测试集

download=False,不下载。如果为True,则先检查root下有无该数据集,如果没有就先下载。

train_set = ds.CIFAR100(root='.', train=True, transform=transform, target_transform=None, download=True)

Step 2,把Dataset封装成torch.utils.data.DataLoader

data_loader = DataLoader(dataset=train_set,
  batch_size=1,
  shuffle=False,
  num_workers=2)


# # 生成torch.utils.data.DataLoaderIter
# # 不过DataLoaderIter它会被DataLoader自动创建并且调用,我们用不到
# data_iter = iter(data_loader)
# images, labels = next(data_iter)

step 3,从DataLoader里读取数据,并将图片显示出来。

注意:

1)使用for...in...循环读取数据的时候,会自动调用DataLoader里的__next__()函数

而且只能对Tensor实例进行迭代,所以之前的transforms必须最后加一个transforms.ToTensor()

2)显示图片有两种方式:Image.show()和plt.imshow(ndarray)

Image.show():

通过transforms.ToPILImage()把FloatTensor转化为Image

plt.imshow(ndarray):

通过FloatTensor.numpy()转化为ndarray,再调用plt.imshow()

to_pil_image = transforms.ToPILImage()
cnt = 0
for image,label in data_loader:
 if cnt>=3: # 只显示3张图片
 break
 print(label) # 显示label

 # 方法1:Image.show()
 # transforms.ToPILImage()中有一句
 # npimg = np.transpose(pic.numpy(), (1, 2, 0))
 # 因此pic只能是3-D Tensor,所以要用image[0]消去batch那一维
 img = to_pil_image(image[0])
 img.show()

 # 方法2:plt.imshow(ndarray)
 img = image[0] # plt.imshow()只能接受3-D Tensor,所以也要用image[0]消去batch那一维
 img = img.numpy() # FloatTensor转为ndarray
 img = np.transpose(img, (1,2,0)) # 把channel那一维放到最后

 # 显示图片
 plt.imshow(img)
 plt.show()

 cnt += 1

另外补一句np.transpose()的用法。

第一个参数是要transpose的图片;

第二个是shape。比如一个ndarray是(channel, height, width),如果给第二个参数(height, width,channel),就会把第0维channel整个搬到最后。

以上这篇PyTorch读取Cifar数据集并显示图片的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python与Java间Socket通信实例代码

Python与Java间Socket通信   之前做过一款Java的通讯工具,有发消息发文件等基本功能.可大家也都知道Java写的界面无论是AWT或Swing,那简直不是人看的,对于我们...

Django压缩静态文件的实现方法详析

django静态文件配置原理 静态文件配置就是为了让用户请求时django服务器能找到静态文件返回。 首先要理解几个概念: 媒体文件:用户上传的文件 静态文件:css,js,...

python字符串中的单双引

python中字符串可以(且仅可以)使用成对的单引号、双引号、三个双引号(文档字符串)包围: 'this is a book'  "this is a book" """thi...

django的settings中设置中文支持的实现

今天创建了个django工程,用的是目前django 1.9.6,创建工程后,settings.py中设置中文显示支持(最简单的,例如把admin界面的默认英文改成中文),定义 TI...

对python 通过ssh访问数据库的实例详解

通常,为了安全性,数据库只允许通过ssh来访问。例如:mysql数据库放在服务器A上,只允许数据库B来访问,这时,我们需要用机器C去访问数据库,就需要用C通过ssh连接B,再访问A。 通...