tensorflow 加载部分变量的实例讲解

yipeiwu_com5年前Python基础

tensorflow模型保存为saver = tf.train.Saver()函数,saver.save()保存模型,代码如下:

import tensorflow as tf
 
v1= tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v1")
v2= tf.Variable(tf.zeros([200]), name="v2")
saver = tf.train.Saver()
with tf.Session() as sess:
 init_op = tf.global_variables_initializer()
 sess.run(init_op)
 saver.save(sess,"checkpoint/model_test",global_step=1)

当我们保存模型后,我们可以通过saver.restore()来加载模型,初始化变量:

import tensorflow as tf
 
v1= tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v1")
v2= tf.Variable(tf.zeros([200]), name="v2")
saver = tf.train.Saver()
with tf.Session() as sess:
 # init_op = tf.global_variables_initializer()
 # sess.run(init_op)
 saver.restore(sess, "checkpoint/model_test-1")
 # saver.save(sess,"checkpoint/model_test",global_step=1)

神经网络训练时,有时候我们需要从预训练的模型中加载部分参数,初始化当前模型,例如加入CNN有6层,我们需要从已有的模型初始化CNN前5层参数.这可以通过saver.restore()实现.

之前我们已经介绍可以通过tf.train.Saver()的保存部分变量的方法,即需要保存的变量列表,同样的,在变量初始化的时候,我们可以对需要单独初始化的变量分别定义一个tf.train.Saver()函数,这样就可以单独对该部分变量初始化,例如下面代码,saver1用于初始化变量v1,saver2用于初始化变量v2,v3:

import tensorflow as tf
 
v1= tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="v1")
v2= tf.Variable(tf.zeros([200]), name="v2")
v3= tf.Variable(tf.zeros([100]), name="v3")
#saver = tf.train.Saver()
saver1 = tf.train.Saver([v1])
saver2 = tf.train.Saver([v2]+[v3])
with tf.Session() as sess:
 # init_op = tf.global_variables_initializer()
 # sess.run(init_op)
 saver1.restore(sess, "checkpoint/model_test-1")
 saver2.restore(sess, "checkpoint/model_test-1")
 # saver.save(sess,"checkpoint/model_test",global_step=1)

以上这篇tensorflow 加载部分变量的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Django框架中用户的登录和退出的实现

Django 提供内置的视图(view)函数用于处理登录和退出 (以及其他奇技淫巧),但在开始前,我们来看看如何手工登录和退出。 Django提供两个函数来执行django.contr...

使用pyinstaller逆向.pyc文件

使用pyinstaller逆向.pyc文件

搭建python环境 1.百度搜索python3.7下载,找到官网下载安装包,运行安装包并配置环境变量。 2.这里一定要安装python3.7版本的,我之前安装python...

python实现问号表达式(?)的方法

python中的and和or和其它语言的区别很大其它语言中的and和or都是返回bool类型的结果,python不是。它返回的是做and和or运算的其中一个值。那个值决定了这个表达式的值...

使用tensorboard可视化loss和acc的实例

1.用try...except...避免因版本不同出现导入错误问题 try: image_summary = tf.image_summary scalar_summary =...

Pandas 缺失数据处理的实现

数据丢失(缺失)在现实生活中总是一个问题。 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重...