对numpy中的transpose和swapaxes函数详解

yipeiwu_com6年前Python基础

transpose()

这个函数如果括号内不带参数,就相当于转置,和.T效果一样,而今天主要来讲解其带参数。

我们看如下一个numpy的数组:

`arr=np.arange(16).reshape((2,2,4)) 
arr= 
array([[[ 0, 1, 2, 3], 
[ 4, 5, 6, 7]], 
[[ 8, 9, 10, 11], 
[12, 13, 14, 15]]])
` 

那么有:

arr.transpose(2,1,0)
array([[[ 0, 8],
  [ 4, 12]],

  [[ 1, 9],
  [ 5, 13]],

  [[ 2, 10],
  [ 6, 14]],

  [[ 3, 11],
  [ 7, 15]]])

为什么会是这样的结果呢,这是因为arr这个数组有三个维度,三个维度的编号对应为(0,1,2),比如这样,我们需要拿到7这个数字,怎么办,肯定需要些三个维度的值,7的第一个维度为0,第二个维度为1,第三个3,所以arr[0,1,3]则拿到了7

arr[0,1,3] #结果就是7

这下应该懂了些吧,好,再回到transpose()这个函数,它里面就是维度的排序,比如我们后面写的transpose(2,1,0),就是把之前第三个维度转为第一个维度,之前的第二个维度不变,之前的第一个维度变为第三个维度,好那么我们继续拿7这个值来说,之前的索引为[0,1,3],按照我们的转换方法,把之前的第三维度变为第一维度,之前的第一维度变为第三维度,那么现在7的索引就是(3,1,0)

同理所有的数组内的数字都是这样变得,这就是transpose()内参数的变化。

理解了上面,再来理解swapaxes()就很简单了,swapaxes接受一对轴编号,其实这里我们叫一对维度编号更好吧,比如:

arr.swapaxes(2,1) #就是将第三个维度和第二个维度交换
array([[[ 0, 4],
  [ 1, 5],
  [ 2, 6],
  [ 3, 7]],

  [[ 8, 12],
  [ 9, 13],
  [10, 14],
  [11, 15]]])

还是那我们的数字7来说,之前的索引是(0,1,3),那么交换之后,就应该是(0,3,1)

多说一句,其实numpy高维数组的切片也是这样选取维度的。

以上这篇对numpy中的transpose和swapaxes函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python算法学习之桶排序算法实例(分块排序)

复制代码 代码如下:# -*- coding: utf-8 -*- def insertion_sort(A):    """插入排序,作为桶排序的子排序"...

详解Python中的元组与逻辑运算符

详解Python中的元组与逻辑运算符

Python元组 元组是另一个数据类型,类似于List(列表)。 元组用"()"标识。内部元素用逗号隔开。但是元素不能二次赋值,相当于只读列表。 #!/usr/bin/python...

用pandas按列合并两个文件的实例

用pandas按列合并两个文件的实例

直接上图,图文并茂,相信你很快就知道要干什么。 A文件: B文件: 可以发现,A文件中“汉字井号”这一列和B文件中“WELL”这一列的属性相同,以这一列为主键,把B文件中“TIME”...

Pytorch之view及view_as使用详解

view()函数是在torch.Tensor.view()下的一个函数,可以有tensor调用,也可以有variable调用。 其作用在于返回和原tensor数据个数相同,但size不同...

Python实现改变与矩形橡胶的线条的颜色代码示例

Python实现改变与矩形橡胶的线条的颜色代码示例

 与矩形相交的线条颜色为红色,其他为蓝色。 演示如下: 实例代码如下: import numpy as np import matplotlib.pyplot as pl...