对numpy中的transpose和swapaxes函数详解

yipeiwu_com5年前Python基础

transpose()

这个函数如果括号内不带参数,就相当于转置,和.T效果一样,而今天主要来讲解其带参数。

我们看如下一个numpy的数组:

`arr=np.arange(16).reshape((2,2,4)) 
arr= 
array([[[ 0, 1, 2, 3], 
[ 4, 5, 6, 7]], 
[[ 8, 9, 10, 11], 
[12, 13, 14, 15]]])
` 

那么有:

arr.transpose(2,1,0)
array([[[ 0, 8],
  [ 4, 12]],

  [[ 1, 9],
  [ 5, 13]],

  [[ 2, 10],
  [ 6, 14]],

  [[ 3, 11],
  [ 7, 15]]])

为什么会是这样的结果呢,这是因为arr这个数组有三个维度,三个维度的编号对应为(0,1,2),比如这样,我们需要拿到7这个数字,怎么办,肯定需要些三个维度的值,7的第一个维度为0,第二个维度为1,第三个3,所以arr[0,1,3]则拿到了7

arr[0,1,3] #结果就是7

这下应该懂了些吧,好,再回到transpose()这个函数,它里面就是维度的排序,比如我们后面写的transpose(2,1,0),就是把之前第三个维度转为第一个维度,之前的第二个维度不变,之前的第一个维度变为第三个维度,好那么我们继续拿7这个值来说,之前的索引为[0,1,3],按照我们的转换方法,把之前的第三维度变为第一维度,之前的第一维度变为第三维度,那么现在7的索引就是(3,1,0)

同理所有的数组内的数字都是这样变得,这就是transpose()内参数的变化。

理解了上面,再来理解swapaxes()就很简单了,swapaxes接受一对轴编号,其实这里我们叫一对维度编号更好吧,比如:

arr.swapaxes(2,1) #就是将第三个维度和第二个维度交换
array([[[ 0, 4],
  [ 1, 5],
  [ 2, 6],
  [ 3, 7]],

  [[ 8, 12],
  [ 9, 13],
  [10, 14],
  [11, 15]]])

还是那我们的数字7来说,之前的索引是(0,1,3),那么交换之后,就应该是(0,3,1)

多说一句,其实numpy高维数组的切片也是这样选取维度的。

以上这篇对numpy中的transpose和swapaxes函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python numpy函数中的linspace创建等差数列详解

python numpy函数中的linspace创建等差数列详解

前言 本文主要给大家介绍的是关于linspace创建等差数列的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。 numpy.linspace 是用于创建一个由等...

一张图带我们入门Python基础教程

一张图带我们入门Python基础教程

啄木鸟社区上原始翻译后绘制的,最早这个图是出现在(链接已失效) “这个图太棒了,有编程基础的人一下子就了解 Python 的用法了。真正的 30 分钟上手。”Buzz by http:/...

Python编程中类与类的关系详解

类与类的关系 依赖关系 # 依赖关系: 将一个类的类名或者对象传给另一个类的方法中. class Elephant: def __init__(self, name):...

分析Python中设计模式之Decorator装饰器模式的要点

先给出一个四人团对Decorator mode的定义:动态地给一个对象添加一些额外的职责。 再来说说这个模式的好处:认证,权限检查,记日志,检查参数,加锁,等等等等,这些功能和系统业务无...

Python操作qml对象过程详解

1. 如何在python里获得qml里的对象? 1.1 获取根对象 QML: import QtQuick 2.12 import QtQuick.Controls 2.12 A...