基于sklearn实现Bagging算法(python)

yipeiwu_com6年前Python基础

本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示:

图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。

实现Bagging算法的代码如下:

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
import csv
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
data=[]
traffic_feature=[]
traffic_target=[]
csv_file = csv.reader(open('packSize_all.csv'))
for content in csv_file:
 content=list(map(float,content))
 if len(content)!=0:
  data.append(content)
  traffic_feature.append(content[0:6])//存放数据集的特征
  traffic_target.append(content[-1])//存放数据集的标签
print('data=',data)
print('traffic_feature=',traffic_feature)
print('traffic_target=',traffic_target)
scaler = StandardScaler() # 标准化转换
scaler.fit(traffic_feature) # 训练标准化对象
traffic_feature= scaler.transform(traffic_feature) # 转换数据集
feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0)
tree=DecisionTreeClassifier(criterion='entropy', max_depth=None)
# n_estimators=500:生成500个决策树
clf = BaggingClassifier(base_estimator=tree, n_estimators=500, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=1, random_state=1)
clf.fit(feature_train,target_train)
predict_results=clf.predict(feature_test)
print(accuracy_score(predict_results, target_test))
conf_mat = confusion_matrix(target_test, predict_results)
print(conf_mat)
print(classification_report(target_test, predict_results))

运行结果如图所示:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现K近邻回归,采用等权重和不等权重的方法

如下所示: from sklearn.datasets import load_boston boston = load_boston() from sklearn.cros...

python数值基础知识浅析

内置数据类型 Python的内置数据类型既包括数值型和布尔型之类的标量,也包括 更为复杂的列表、字典和文件等结构。 数值 Python有4种数值类型,即整数型、浮点数型、复数型和布...

浅谈python中的变量默认是什么类型

1、type(变量名),输出的结果就是变量的类型; 例如 >>> type(6) <type 'int'> 2、在Python里面变量在声明时,不需要指定变...

Windows和Linux下Python输出彩色文字的方法教程

Windows和Linux下Python输出彩色文字的方法教程

前言 最近在项目中需要输出彩色的文字来提醒用户,以前写过,但是只能在win上面运行。 今天搜了下看有没有在win和Linux上通用的输出彩色文字的模块,结果发现没有,,于是就自己弄了一个...

用Python实现一个简单的能够发送带附件的邮件程序的教程

基本思路就是,使用MIMEMultipart来标示这个邮件是多个部分组成的,然后attach各个部分。如果是附件,则add_header加入附件的声明。 在python中,MIME的这些...