基于sklearn实现Bagging算法(python)

yipeiwu_com5年前Python基础

本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示:

图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。

实现Bagging算法的代码如下:

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
import csv
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
data=[]
traffic_feature=[]
traffic_target=[]
csv_file = csv.reader(open('packSize_all.csv'))
for content in csv_file:
 content=list(map(float,content))
 if len(content)!=0:
  data.append(content)
  traffic_feature.append(content[0:6])//存放数据集的特征
  traffic_target.append(content[-1])//存放数据集的标签
print('data=',data)
print('traffic_feature=',traffic_feature)
print('traffic_target=',traffic_target)
scaler = StandardScaler() # 标准化转换
scaler.fit(traffic_feature) # 训练标准化对象
traffic_feature= scaler.transform(traffic_feature) # 转换数据集
feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0)
tree=DecisionTreeClassifier(criterion='entropy', max_depth=None)
# n_estimators=500:生成500个决策树
clf = BaggingClassifier(base_estimator=tree, n_estimators=500, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=1, random_state=1)
clf.fit(feature_train,target_train)
predict_results=clf.predict(feature_test)
print(accuracy_score(predict_results, target_test))
conf_mat = confusion_matrix(target_test, predict_results)
print(conf_mat)
print(classification_report(target_test, predict_results))

运行结果如图所示:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pandas读取并修改excel的示例代码

Pandas读取并修改excel的示例代码

一、前言 最近总是和excel打交道,由于数据量较大,人工来修改某些数据可能会有点浪费时间,这时候就使用到了Python数据处理的神器—–Pandas库,话不多说,直接上Pandas。...

pytorch cnn 识别手写的字实现自建图片数据

pytorch cnn 识别手写的字实现自建图片数据

本文主要介绍了pytorch cnn 识别手写的字实现自建图片数据,分享给大家,具体如下: # library # standard library import os # th...

详解如何为eclipse安装合适版本的python插件pydev

详解如何为eclipse安装合适版本的python插件pydev

pydev是一款优秀的Eclipse插件,大多数喜欢在eclipse开发软件的程序员(也许是java程序员)在开发python软件时希望继续使用eclipse,那么pydev是非常理想的...

Python语言异常处理测试过程解析

这篇文章主要介绍了Python语言异常处理测试过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 (一)异常处理 1.捕获所有异...

python进程管理工具supervisor使用实例

python进程管理工具supervisor使用实例

平时我们写个脚本,要放到后台执行去,我们怎么做呢? 复制代码 代码如下: nohup python example.py 2>&1 /dev/null & 用tumx或者scre...