pandas 数据归一化以及行删除例程的方法

yipeiwu_com5年前Python基础

如下所示:

#coding:utf8
import pandas as pd
import numpy as np
from pandas import Series,DataFrame
 
# 如果有id列,则需先删除id列再进行对应操作,最后再补上
# 统计的时候不需要用到id列,删除的时候需要考虑
# delete row
def row_del(df, num_percent, label_len = 0):
	#print list(df.count(axis=1))
	col_num = len(list(list(df.values)[1])) - label_len # -1为考虑带标签
	if col_num<0:
		print 'Error'
	#print int(col_num*num_percent)
	return df.dropna(axis=0, how='any', thresh=int(col_num*num_percent))
 
# 如果有字符串类型,则报错
# data normalization -1 to 1
# label_col: 不需考虑的类标,可以为字符串或字符串列表
# 数值类型统一到float64
def data_normalization(df, label_col = []):
	lab_len = len(label_col)
	print label_col
	if lab_len>0:
		df_temp = df.drop(label_col, axis = 1)
		df_lab = df[label_col]
		print df_lab
	else:
		df_temp = df
	max_val = list(df_temp.max(axis=0))
	min_val = list(df_temp.min(axis=0))
	mean_val = list((df_temp.max(axis=0) + df_temp.min(axis=0)) / 2)
	nan_values = df_temp.isnull().values
	row_num = len(list(df_temp.values))
	col_num = len(list(df_temp.values)[1])
	for rn in range(row_num):
		#data_values_r = list(data_values[rn])
		nan_values_r = list(nan_values[rn])
		for cn in range(col_num):
			if nan_values_r[cn] == False:
				df_temp.values[rn][cn] = 2 * (df_temp.values[rn][cn] - mean_val[cn])/(max_val[cn] - min_val[cn])
			else:
				print 'Wrong'
	for index,lab in enumerate(label_col):
		df_temp.insert(index, lab, df_lab[lab])
	return df_temp
 
 
# 创建一个带有缺失值的数据框:
df = pd.DataFrame(np.random.randn(5,3), index=list('abcde'), columns=['one','two','three'])
df.ix[1,:-1]=np.nan
df.ix[1:-1,2]=np.nan
df.ix[0,0]=int(1)
df.ix[2,2]='abc'
 
# 查看一下数据内容:
print '\ndf1'
print df
 
print row_del(df, 0.8)
 
print '-------------------------'
 
df = data_normalization(df, ['two', 'three'])
print df
 
print df.dtypes
 
print (type(df.ix[2,2]))

以上这篇pandas 数据归一化以及行删除例程的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python父目录、子目录的相互调用方法

Python父目录、子目录的相互调用方法

最近在使用Python的过程中经常遇到找不到该模块的问题。其中一个就是父目录子目录之间相互调用的情况。下面简单总结下。 我们在F:\Code文件夹下面创建一个test文件夹 而test...

python中Lambda表达式详解

如果你在学校读的是计算机科学专业,那么可能学过 Lambda 表达式, 不过可能从来没有用过它。如果你不是计算机科学专业,它们看着可能 有点儿陌生(或者只是“曾经学习过的东西”)。在这一...

python调用虹软2.0第三版的具体使用

这一版,对虹软的功能进行了一些封装,添加了人脸特征比对,比对结果保存到文件,和从文件提取特征进行比对,大体功能基本都已经实现,可以进行下一步的应用开发了 face_class.py...

python如何使用正则表达式的前向、后向搜索及前向搜索否定模式详解

前言 在许多的情况下,很多要匹配内容是一起出现,或者一起不出现的。比如《》,< >,这样的括号,不存在使用半个的情况。因此,在正则表达式里也有一致性的判断,要么两个尖括号一起...

使用python读取txt文件的内容,并删除重复的行数方法

注意,本文代码是使用在txt文档上,同时txt文档中的内容每一行代表的是图片的名字。 #coding:utf-8 import shutil readDir = "原文件绝对路经...