利用PyCharm Profile分析异步爬虫效率详解

yipeiwu_com6年前Python爬虫

今天比较忙,水一下

下面的代码来源于这个视频里面提到的,github 的链接为:github.com/mikeckenned…(本地下载

第一个代码如下,就是一个普通的 for 循环爬虫。原文地址

import requests
import bs4
from colorama import Fore


def main():
 get_title_range()
 print("Done.")


def get_html(episode_number: int) -> str:
 print(Fore.YELLOW + f"Getting HTML for episode {episode_number}", flush=True)

 url = f'https://talkpython.fm/{episode_number}'
 resp = requests.get(url)
 resp.raise_for_status()

 return resp.text


def get_title(html: str, episode_number: int) -> str:
 print(Fore.CYAN + f"Getting TITLE for episode {episode_number}", flush=True)
 soup = bs4.BeautifulSoup(html, 'html.parser')
 header = soup.select_one('h1')
 if not header:
  return "MISSING"

 return header.text.strip()


def get_title_range():
 # Please keep this range pretty small to not DDoS my site. ;)
 for n in range(185, 200):
  html = get_html(n)
  title = get_title(html, n)
  print(Fore.WHITE + f"Title found: {title}", flush=True)


if __name__ == '__main__':
 main()

这段代码跑完花了37s,然后我们用 pycharm 的 profiler 工具来具体看看哪些地方比较耗时间。

点击Profile (文件名称)

之后获取到得到一个详细的函数调用关系、耗时图:

可以看到 get_html 这个方法占了96.7%的时间。这个程序的 IO 耗时达到了97%,获取 html 的时候,这段时间内程序就在那死等着。如果我们能够让他不要在那儿傻傻地等待 IO 完成,而是开始干些其他有意义的事,就能节省大量的时间。

稍微做一个计算,试用asyncio异步抓取,能将时间降低多少?

get_html这个方法耗时36.8s,一共调用了15次,说明实际上获取一个链接的 html 的时间为36.8s / 15 = 2.4s。**要是全异步的话,获取15个链接的时间还是2.4s。**然后加上get_title这个函数的耗时0.6s,所以我们估算,改进后的程序将可以用 3s 左右的时间完成,也就是性能能够提升13倍。

再看下改进后的代码。原文地址

import asyncio
from asyncio import AbstractEventLoop

import aiohttp
import requests
import bs4
from colorama import Fore


def main():
 # Create loop
 loop = asyncio.get_event_loop()
 loop.run_until_complete(get_title_range(loop))
 print("Done.")


async def get_html(episode_number: int) -> str:
 print(Fore.YELLOW + f"Getting HTML for episode {episode_number}", flush=True)

 # Make this async with aiohttp's ClientSession
 url = f'https://talkpython.fm/{episode_number}'
 # resp = await requests.get(url)
 # resp.raise_for_status()

 async with aiohttp.ClientSession() as session:
  async with session.get(url) as resp:
   resp.raise_for_status()

   html = await resp.text()
   return html


def get_title(html: str, episode_number: int) -> str:
 print(Fore.CYAN + f"Getting TITLE for episode {episode_number}", flush=True)
 soup = bs4.BeautifulSoup(html, 'html.parser')
 header = soup.select_one('h1')
 if not header:
  return "MISSING"

 return header.text.strip()


async def get_title_range(loop: AbstractEventLoop):
 # Please keep this range pretty small to not DDoS my site. ;)
 tasks = []
 for n in range(190, 200):
  tasks.append((loop.create_task(get_html(n)), n))

 for task, n in tasks:
  html = await task
  title = get_title(html, n)
  print(Fore.WHITE + f"Title found: {title}", flush=True)


if __name__ == '__main__':
 main()

同样的步骤生成profile 图:

可见现在耗时为大约3.8s,基本符合我们的预期了。


总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

如何爬取通过ajax加载数据的网站

如何爬取通过ajax加载数据的网站

目前很多网站都使用ajax技术动态加载数据,和常规的网站不一样,数据时动态加载的,如果我们使用常规的方法爬取网页,得到的只是一堆html代码,没有任何的数据。 请看下面的代码: ur...

玩转python爬虫之正则表达式

玩转python爬虫之正则表达式

面对大量杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式! 1.了解正则表达式 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特...

python实现爬虫下载美女图片

本次爬取的贴吧是百度的美女吧,给广大男同胞们一些激励 在爬取之前需要在浏览器先登录百度贴吧的帐号,各位也可以在代码中使用post提交或者加入cookie 爬行地址:http://tieb...

python requests库爬取豆瓣电视剧数据并保存到本地详解

python requests库爬取豆瓣电视剧数据并保存到本地详解

首先要做的就是去豆瓣网找对应的接口,这里就不赘述了,谷歌浏览器抓包即可,然后要做的就是分析返回的json数据的结构: https://movie.douban.com/j/search...

python脚本爬取字体文件的实现方法

前言 大家应该都有所体会,为了提高验证码的识别准确率,我们当然要首先得到足够多的测试数据。验证码下载下来容易,但是需要人脑手工识别着实让人受不了,于是我就想了个折衷的办法——自己造验证码...