python 图片去噪的方法示例

yipeiwu_com6年前Python基础

图像可能在生成、传输或者采集过程中夹带了噪声,去噪声是图像处理中常用的手法。通常去噪声用滤波的方法,比如中值滤波、均值滤波。但是那样的算法不适合用在处理字符这样目标狭长的图像中,因为在滤波的过程中很有可能会去掉字符本身的像素。

一个采用的是去除杂点的方法来进行去噪声处理的。具体算法如下:扫描整个图像,当发现一个黑色点的时候,就考察和该黑色点间接或者直接相连接的黑色点的个数有多少,如果大于一定的值,那就说明该点不是离散点,否则就是离散点,把它去掉。在考察相连的黑色点的时候用的是递归的方法。此处,我简单的用python实现了,大家可以参考以下。

#coding=utf-8
"""
造物奇迹QQ2737499951
"""
import cv2
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image,ImageEnhance,ImageFilter
 
img_name = 'test.jpg'
#去除干扰线
im = Image.open(img_name)
#图像二值化
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
data = im.getdata()
w,h = im.size
#im.show()
black_point = 0
for x in xrange(1,w-1):
  for y in xrange(1,h-1):
    mid_pixel = data[w*y+x] #中央像素点像素值
    if mid_pixel == 0: #找出上下左右四个方向像素点像素值
      top_pixel = data[w*(y-1)+x]
      left_pixel = data[w*y+(x-1)]
      down_pixel = data[w*(y+1)+x]
      right_pixel = data[w*y+(x+1)]
 
      #判断上下左右的黑色像素点总个数
      if top_pixel == 0:
        black_point += 1
      if left_pixel == 0:
        black_point += 1
      if down_pixel == 0:
        black_point += 1
      if right_pixel == 0:
        black_point += 1
      if black_point >= 3:
        im.putpixel((x,y),0)
      #print black_point
      black_point = 0
im.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python Django模板的使用方法(图文)

python Django模板的使用方法(图文)

模版基本介绍模板是一个文本,用于分离文档的表现形式和内容。 模板定义了占位符以及各种用于规范文档该如何显示的各部分基本逻辑(模板标签)。 模板通常用于产生HTML,但是Django的模板...

python正则表达式re之compile函数解析

re正则表达式模块还包括一些有用的操作正则表达式的函数。下面主要介绍compile函数。 定义: compile(pattern[,flags] ) 根据包含正则表达式的字符串创...

python实现日志按天分割

本文实例为大家分享了python实现日志按天分割的具体代码,供大家参考,具体内容如下 日志格式: 1.1.1.1 - - [30/Apr/2015:00:34:55 +0800] “P...

python 将json数据提取转化为txt的方法

如下所示: #-*- coding: UTF-8 -*- import json import pymysql import os import sys # 数据类型 # { #...

python统计中文字符数量的两种方法

方法一: def str_count(str): '''找出字符串中的中英文、空格、数字、标点符号个数''' count_en = count_dg = count_sp = c...