python 图片去噪的方法示例

yipeiwu_com6年前Python基础

图像可能在生成、传输或者采集过程中夹带了噪声,去噪声是图像处理中常用的手法。通常去噪声用滤波的方法,比如中值滤波、均值滤波。但是那样的算法不适合用在处理字符这样目标狭长的图像中,因为在滤波的过程中很有可能会去掉字符本身的像素。

一个采用的是去除杂点的方法来进行去噪声处理的。具体算法如下:扫描整个图像,当发现一个黑色点的时候,就考察和该黑色点间接或者直接相连接的黑色点的个数有多少,如果大于一定的值,那就说明该点不是离散点,否则就是离散点,把它去掉。在考察相连的黑色点的时候用的是递归的方法。此处,我简单的用python实现了,大家可以参考以下。

#coding=utf-8
"""
造物奇迹QQ2737499951
"""
import cv2
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image,ImageEnhance,ImageFilter
 
img_name = 'test.jpg'
#去除干扰线
im = Image.open(img_name)
#图像二值化
enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
data = im.getdata()
w,h = im.size
#im.show()
black_point = 0
for x in xrange(1,w-1):
  for y in xrange(1,h-1):
    mid_pixel = data[w*y+x] #中央像素点像素值
    if mid_pixel == 0: #找出上下左右四个方向像素点像素值
      top_pixel = data[w*(y-1)+x]
      left_pixel = data[w*y+(x-1)]
      down_pixel = data[w*(y+1)+x]
      right_pixel = data[w*y+(x+1)]
 
      #判断上下左右的黑色像素点总个数
      if top_pixel == 0:
        black_point += 1
      if left_pixel == 0:
        black_point += 1
      if down_pixel == 0:
        black_point += 1
      if right_pixel == 0:
        black_point += 1
      if black_point >= 3:
        im.putpixel((x,y),0)
      #print black_point
      black_point = 0
im.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用锁访问共享变量实例解析

本文研究的主要是python使用锁访问共享变量,具体介绍和实现如下。 python 做多线程编程时,多个线程若同时访问某个变量,可能会对变量数据造成破坏,pyhon中的threading...

Python实现去除列表中重复元素的方法小结【4种方法】

Python实现去除列表中重复元素的方法小结【4种方法】

本文实例讲述了Python实现去除列表中重复元素的方法。分享给大家供大家参考,具体如下: 这里一共使用了四种方法来去除列表中的重复元素,下面是具体实现: #!usr/bin/env...

使用Python脚本将Bing的每日图片作为桌面的教程

微软最近出了个 必应bing 缤纷桌面,使用下来还是不错,可以每天更换Bing首页的北京作为壁纸,但是该软件有个不好的地方是,安装后桌面上会有一个搜索框出现,很是烦人,而且不能关掉。于是...

Python中Continue语句的用法的举例详解

Python中Continue语句的用法的举例详解

 Python continue语句返回while循环的开始。Continue语句拒绝在该循环的当前迭代中的其余语句执行并移动控制返回到循环的顶部(开始位置)。 continu...

完美解决python中ndarray 默认用科学计数法显示的问题

完美解决python中ndarray 默认用科学计数法显示的问题

机器环境: Python 3.6.4 numpy==1.14.0 pandas==0.22.0 解决方法: np.set_printoptions(suppress=True) 默认情况...