pandas DataFrame 警告(SettingWithCopyWarning)的解决

yipeiwu_com5年前Python基础

刚接触python不久,编程也是三脚猫,所以对常用的这几个工具还没有一个好的使用习惯,毕竟程序语言是头顺毛驴。所以最近在工作中使用的时候在使用pandas的DataFrame时遇到了以下报警:

SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html

debug了半天,也在网上找了很多,还是没有解决,在报警的那一句调了半天,后来发现主要问题并不是出现在报警的那一句。

给个例子复现一下这个问题:

import pandas as pd
A = pd.DataFrame([[1,2,3],[2,3,4],[3,4,5]], columns = ['a','b','c'])
B = A[['a', 'b']]
B['a'] = B['a'] + 1 # same result by using B.loc[:,'a'] = B.loc[:,'a']+ 1

输出:

A
Out[1]:
   a  b  c
0  1  2  3
1  2  3  4
2  3  4  5

B
Out[2]:
   a  b
0  1  2
1  2  3
2  3  4

B
Out[3]:
   a  b
0  2  2
1  3  3
2  4  4

先说一下我的感觉:这个报警主要是说,你当前对B的操作可能会改变另一个DataFrame A,所以你要小心了。(当然实际的警告并不是这个意思,但是“在DataFrame的一个切片的copy上进行操作”我感觉不出来有什么问题,还请大神们解答一下。)

报警出现在第4行,但主要的问题在于第3行:应该使用.loc方法得到新的DataFrame,而不是直接使用[]引用。

C = A.loc[:,['a','b']]
C['a'] = C['a']+1

这样就不会出现报警了。

个人感觉好像是说用.loc是对原有DataFrame的一种复制性引用,而[]的引用则是指针性的引用,和python本身的赋值特性有关。不过我看了A的值也并没有在B被更改时一同被改掉。总之我现在还只是知其然,不知其所以然,希望有大神帮忙解惑。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python文件处理

本文给大家介绍Python文件处理相关知识,具体内容如下所示: 1.文件的常见操作 文件是日常编程中常用的操作,通常用于存储数据或应用系统的参数。python提供了os、os.path...

python实现决策树分类(2)

在上一篇文章中,我们已经构建了决策树,接下来可以使用它用于实际的数据分类。在执行数据分类时,需要决策时以及标签向量。程序比较测试数据和决策树上的数值,递归执行直到进入叶子节点。 这篇文章...

Python解析多帧dicom数据详解

概述 pydicom是一个常用python DICOM parser。但是,没有提供解析多帧图的示例。本文结合相关函数和DICOM知识做一个简单说明。 DICOM多帧数据存储 DICOM...

python字符串格式化方式解析

1.%格式符 name = '李四' age = 18 a = "姓名:%s,年龄:%s"%(name,age) print(a) #姓名:李四,年龄:18 ​ b...

python数据类型判断type与isinstance的区别实例解析

在项目中,我们会在每个接口验证客户端传过来的参数类型,如果验证不通过,返回给客户端“参数错误”错误码。 这样做不但便于调试,而且增加健壮性。因为客户端是可以作弊的,不要轻易相信客户端传过...