Python OpenCV调用摄像头检测人脸并截图

yipeiwu_com6年前Python基础

本文实例为大家分享了Python OpenCV调用摄像头检测人脸并截图的具体代码,供大家参考,具体内容如下

注意:需要在python中安装OpenCV库,同时需要下载OpenCV人脸识别模型haarcascade_frontalface_alt.xml,模型可在OpenCV-PCA-KNN-SVM_face_recognition中下载。

使用OpenCV调用摄像头检测人脸并连续截图100张

#-*- coding: utf-8 -*-
# import 进openCV的库
import cv2

###调用电脑摄像头检测人脸并截图

def CatchPICFromVideo(window_name, camera_idx, catch_pic_num, path_name):
 cv2.namedWindow(window_name)

 #视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
 cap = cv2.VideoCapture(camera_idx)

 #告诉OpenCV使用人脸识别分类器
 classfier = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")

 #识别出人脸后要画的边框的颜色,RGB格式, color是一个不可增删的数组
 color = (0, 255, 0)

 num = 0
 while cap.isOpened():
  ok, frame = cap.read() #读取一帧数据
  if not ok:
   break

  grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #将当前桢图像转换成灰度图像

  #人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
  faceRects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32))
  if len(faceRects) > 0:   #大于0则检测到人脸
   for faceRect in faceRects: #单独框出每一张人脸
    x, y, w, h = faceRect

    #将当前帧保存为图片
    img_name = "%s/%d.jpg" % (path_name, num)
    #print(img_name)
    image = frame[y - 10: y + h + 10, x - 10: x + w + 10]
    cv2.imwrite(img_name, image,[int(cv2.IMWRITE_PNG_COMPRESSION), 9])

    num += 1
    if num > (catch_pic_num): #如果超过指定最大保存数量退出循环
     break

    #画出矩形框
    cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)

    #显示当前捕捉到了多少人脸图片了,这样站在那里被拍摄时心里有个数,不用两眼一抹黑傻等着
    font = cv2.FONT_HERSHEY_SIMPLEX
    cv2.putText(frame,'num:%d/100' % (num),(x + 30, y + 30), font, 1, (255,0,255),4)

    #超过指定最大保存数量结束程序
  if num > (catch_pic_num): break

  #显示图像
  cv2.imshow(window_name, frame)
  c = cv2.waitKey(10)
  if c & 0xFF == ord('q'):
   break

   #释放摄像头并销毁所有窗口
 cap.release()
 cv2.destroyAllWindows()

if __name__ == '__main__':
 # 连续截100张图像,存进image文件夹中
 CatchPICFromVideo("get face", 0, 99, "/image")

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Python获取网段IP个数以及地址清单的方法

使用Python获取网段IP个数以及地址清单的方法

使用Python获取网段的IP个数以及地址清单需要用到IPy的库,而相应的方法主要就是IP。 写小脚本如下: from IPy import IP ip = IP('192.1...

PyTorch中Tensor的维度变换实现

对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看。 维...

使用 Python 合并多个格式一致的 Excel 文件(推荐)

使用 Python 合并多个格式一致的 Excel 文件(推荐)

一 问题描述 最近朋友在工作中遇到这样一个问题,她每天都要处理如下一批 Excel 表格:每个表格的都只有一个 sheet,表格的前两行为表格标题及表头,表格的最后一行是相关人员签字。最...

详解Python3 pandas.merge用法

详解Python3 pandas.merge用法

摘要 数据分析与建模的时候大部分时间在数据准备上,包括对数据的加载、清理、转换以及重塑。pandas提供了一组高级的、灵活的、高效的核心函数,能够轻松的将数据规整化。这节主要对panda...

Python中利用LSTM模型进行时间序列预测分析的实现

Python中利用LSTM模型进行时间序列预测分析的实现

时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征。这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事...