通过celery异步处理一个查询任务的完整代码

yipeiwu_com6年前Python基础

今天介绍通过celery实现一个异步任务。有这样一个需求,前端发起一个查询的请求,但是发起查询后,查询可能不会立即返回结果。这时候,发起查询后,后端可以把这次查询当作一个task,并立即返回一个能唯一表明该task的值,如taskID(用户后面可以通过这个taskID 随时查看结果),用户收到这个taskID后,可以转去处理其他任务,而不必一直等待查询结果。后端API调用celery来处理这个task,并将结果值保存在一个csv文件中,后面用户通过taskID 查询时返回结果。

def application(environ,start_response):
  """部分代码省略"""
  query_string = environ['QUERY_STRING']
  serviceGroupName = ""
  for getParam in query_string.split("&"):
    params = getParam.split("=")
    resultInfo = ""
    if params[0] == "type":
      alertType = params[1]
    elif params[0] == "projectName":
      projectName = params[1]
    elif params[0] == "serviceGroupName":
      serviceGroupName = params[1]
    else:
      resultInfo = error_info(-1, "GET参数只能为type=<?>&projectName=<?>&serviceGroupName=<?>;必须指定三个参数", {})
    return [resultInfo]  
  taskId = 1
  result_file_name = '/var/www/dba_api/api/test/'+ str(taskId) + '.csv'
  contentInfo = json.dumps({"taskId":1,"opType":"continue","serviceGroupName":serviceGroupName,"dbHost":dbHost,"dbPasswd":dbPasswd,"dbUser":dbUser,"dbPort":dbPort})
  result = getServiceInfo.apply_async((contentInfo,),queue="getServiceInfo")
  taskInfo = "任务已经创建,详情请查看:http://10.4.34.254/api/task?taskId=%s"% (taskId)
  return [resultInfo]

getServiceInfo.apply_async((contentInfo,),queue=”getServiceInfo”),重点是这一行,apply_async()方法会返回一个AsyncResult实例,通过这个实例可以跟踪任务状态轨迹。

要使用此功能,需要提供结果后台(result backend),这样才有地方存储任务状态等信息。其中,getServiceInfo是自定义的一个task,后续会介绍到,contentInfo是传递的一个参数,queue是指定队列名称。

上面这个函数的原型如下:

task.apply_async(args[, kwargs[, …]])

其中 args 和 kwargs 分别是 task 接收的参数,当然它也接受额外的参数对任务进行控制。

在 Celery 中执行任务的方法一共有三种:

1. delay, 用来进行最简单便捷的任务执行(delay在第3小节的测试中使用过,它可以看作是apply_async的一个快捷方式);

2. apply_async, 对于任务的执行附加额外的参数,对任务进行控制;

3. app.send_task, 可以执行未在 Celery 中进行注册的任务。

celery文件配置

在python的库存放路径中(一般是/usr/lib/python2.6/site-packages),创建一个文件夹proj,进入proj目录,创建三个文件,init,将proj声明一个python包,celepy,其内容如下:

#_*_ coding:utf-8 _*_
from __future__ import absolute_import
from celery import Celery

app = Celery("proj",
broker="amqp://user:password@localhost//",
backend="amqp",
include=["proj.tasks"]
)
app.conf.update(
CELERY_ROUTES={
"proj.tasks.getServerInfo":{"queue":"getServerInfo"},
}
)
if __name__=="__main__":
  app.start()

这里我们定义了模块名称proj以及celery 路由。

还有一个文件,task.py

#_*_ coding:utf-8 _*_i
from __future__ import absolute_import
from proj.celery import app
import random
import simplejson as json
import types
import time
import MySQLdb
import urllib2
import ConfigParser as cparser
import hmac
import hashlib
import base64
@app.task
def getServiceInfo(contentInfo):
  contentInfo = json.loads(contentInfo)
  serviceGroupName = contentInfo['serviceGroupName']

  dbHost = contentInfo['dbHost']
  dbPort = int(contentInfo['dbPort'])
  dbUser = contentInfo['dbUser']
  dbPasswd = contentInfo['dbPasswd']
  msgLib = MessageLib.MessageLib()
  Sql = "Your SQL"
  #第三步:连接数据库,执行代码逻辑
  try:
    db_connection = MySQLdb.connect(host=dbHost, port=dbPort, passwd=dbPasswd, db="cmdb", user=dbUser, connect_timeout=2, charset="utf8")
    cursor = db_connection.cursor()
    cursor.execute(getServiceGroupHostSql)
    row = cursor.fetchall()
    result = []
    for line in row:
      ...
      result.append(tempMysqlHighInfo)

  resultInfo = msgLib.success_info(result)
  return resultInfo
  except Exception, e:
    raise
    errorInfo = "dbhost:%s, port:%s, error:%s" % (dbHost, dbPort, str(e))
    #return getServiceGroupHostSql,errorInfo
    return msgLib.error_info(-1, errorInfo, {})

启动celery

celery -A proj worker -Q getServiceInfo -l debug -c 6

最后,写一个结果,专门获取查询结果的结果,传入的参数为taskID,部分代码如下:

def application(environ,start_response):
  status = '400 ERROR'
  response_headers = [('Content-type', 'application/json;charset=utf-8')]
  start_response(status, response_headers)

  status = '200 OK'
  response_headers = [('Content-type', 'application/json;charset=utf-8')]
  start_response(status, response_headers)

  if environ['REQUEST_METHOD'] != "GET":
    resultInfo = msgLib.error_info(-1, "http请求类型不是GET", {})
  return [resultInfo]

  query_string = environ['QUERY_STRING']
  serviceGroupName = ""
  for getParam in query_string.split("&"):
    params = getParam.split("=")
    resultInfo = ""
    if params[0] == "taskId":
      taskId = params[1]
    else:
      resultInfo = msgLib.error_info(-1, "GET参数无比指定taskId这个参数", {})
    return [resultInfo]
  logging.info(query_string)
  result_file_name = '/var/www/dba_api/api/test/'+ str(taskId) + '.csv'
  result = []
  try:
    with open (result_file_name,'rb') as fp:
    lines = csv.reader(fp)
    for line in lines :
    result.append(line)
    resultInfo = msgLib.success_info(result)
  return resultInfo
  except Exception, e:
  errorInfo = "some thing wrong"
  return msgLib.error_info(-1, errorInfo, {})

以上这篇通过celery异步处理一个查询任务的完整代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中copy()与deepcopy()的区别小结

python中copy()与deepcopy()的区别小结

前言 copy()与deepcopy()之间的区分必须要涉及到python对于数据的存储方式。 深复制被复制对象完全再复制一遍作为独立的新个体单独存在。所以改变原有被复制对象不会对已经复...

Python Numpy库datetime类型的处理详解

Python Numpy库datetime类型的处理详解

前言 关于时间的处理,Python中自带的处理时间的模块就有time 、datetime、calendar,另外还有扩展的第三方库,如dateutil等等。通过这些途径可以随心所欲地用P...

Python自动发邮件脚本

Python自动发邮件脚本

缘起 这段时间给朋友搞了个群发邮件的脚本,为了防止进入垃圾邮件,做了很多工作,刚搞完,垃圾邮件进入率50%,觉得还不错,如果要将垃圾邮件的进入率再调低,估计就要花钱买主机了,想想也就算了...

Python 写入训练日志文件并控制台输出解析

Python 写入训练日志文件并控制台输出解析

1. 背景 在深度学习的任务中,通常需要比较长时间的训练,因此我们会选择离开电脑。笔者在跟踪模型表现, 观察模型accuracy 以及 loss 的时候,比较传统的方法是在控制台prin...

Python异常处理总结

本文较为详细的罗列了Python常见的异常处理,供大家参考,具体如下: 1. 抛出异常和自定义异常 Python用异常对象(exception object)表示异常情况,遇到错误后,会...