对Pytorch中Tensor的各种池化操作解析

yipeiwu_com5年前Python基础

AdaptiveAvgPool1d(N)

对一个C*H*W的三维输入Tensor, 池化输出为C*H*N, 即按照H轴逐行对W轴平均池化

>>> a = torch.ones(2,3,4)
>>> a[0,1,2] = 0
>>>> a
tensor([[[1., 1., 1., 1.],
     [1., 1., 0., 1.],
     [1., 1., 1., 1.]],

    [[1., 1., 1., 1.],
     [1., 1., 1., 1.],
     [1., 1., 1., 1.]]])
     
>>> nn.AdaptiveAvgPool1d(5)(a)
tensor([[[1.0000, 1.0000, 1.0000, 1.0000, 1.0000],
     [1.0000, 1.0000, 0.5000, 0.5000, 1.0000],
     [1.0000, 1.0000, 1.0000, 1.0000, 1.0000]],

    [[1.0000, 1.0000, 1.0000, 1.0000, 1.0000],
     [1.0000, 1.0000, 1.0000, 1.0000, 1.0000],
     [1.0000, 1.0000, 1.0000, 1.0000, 1.0000]]])
     
>>> nn.AdaptiveAvgPool1d(1)(a)
tensor([[[1.0000],
     [0.7500],
     [1.0000]],

    [[1.0000],
     [1.0000],
     [1.0000]]])

AdaptiveAvgPool2d((M,N))

对一个B*C*H*W的四维输入Tensor, 池化输出为B*C*M*N, 即按照C轴逐通道对H*W平面平均池化

>>> a = torch.ones(2,2,3,4)
>>> a[:,:,:,1] = 0
>>> a
tensor([[[[1., 0., 1., 1.],
     [1., 0., 1., 1.],
     [1., 0., 1., 1.]],

     [[1., 0., 1., 1.],
     [1., 0., 1., 1.],
     [1., 0., 1., 1.]]],


    [[[1., 0., 1., 1.],
     [1., 0., 1., 1.],
     [1., 0., 1., 1.]],

     [[1., 0., 1., 1.],
     [1., 0., 1., 1.],
     [1., 0., 1., 1.]]]])
     
>>> nn.AdaptiveAvgPool2d((1,2))(a)
tensor([[[[0.5000, 1.0000]],
     [[0.5000, 1.0000]]],
     
    [[[0.5000, 1.0000]],
     [[0.5000, 1.0000]]]])
     
>>> nn.AdaptiveAvgPool2d(1)(a)
tensor([[[[0.7500]],
     [[0.7500]]],

    [[[0.7500]],
     [[0.7500]]]])

AdaptiveAvgPool3d((M,N,K))

对一个B*C*D*H*W的五维输入Tensor, 池化输出为B*C*M*N*K, 即按照C轴逐通道对D*H*W平面平均池化

>>> a = torch.ones(1,2,2,3,4)
>>> a[0,0,:,:,0:2] = 0
>>> a
tensor([[[[[0., 0., 1., 1.],
      [0., 0., 1., 1.],
      [0., 0., 1., 1.]],
      
     [[0., 0., 1., 1.],
      [0., 0., 1., 1.],
      [0., 0., 1., 1.]]],

     [[[1., 1., 1., 1.],
      [1., 1., 1., 1.],
      [1., 1., 1., 1.]],

     [[1., 1., 1., 1.],
      [1., 1., 1., 1.],
      [1., 1., 1., 1.]]]]])
     
>>> nn.AdaptiveAvgPool3d((1,1,2))(a)
tensor([[[[[0., 1.]]],

     [[[1., 1.]]]]])
     
>>> nn.AdaptiveAvgPool3d(1)(a)
tensor([[[[[0.5000]]],

     [[[1.0000]]]]])

以上这篇对Pytorch中Tensor的各种池化操作解析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python opencv检测目标颜色的实例讲解

python opencv检测目标颜色的实例讲解

实例如下所示: # -*- coding:utf-8 -*- __author__ = 'kingking' __version__ = '1.0' __date__ = '14/0...

Python cookbook(数据结构与算法)实现优先级队列的方法示例

本文实例讲述了Python实现优先级队列的方法。分享给大家供大家参考,具体如下: 问题:要实现一个队列,它能够以给定的优先级对元素排序,且每次pop操作时都会返回优先级最高的那个元素;...

使用PyInstaller将Pygame库编写的小游戏程序打包为exe文件及出现问题解决方法

使用PyInstaller将Pygame库编写的小游戏程序打包为exe文件及出现问题解决方法

下面看下通过Pyinstaller打包Pygame库写的小游戏程序出现的问题解决方法 # -基于Python的Pygame库的GUI游戏 游戏内容是通过飞船发射子弹来射击外星人 空格键为...

使用python对文件中的单词进行提取的方法示例

使用python对文件中的单词进行提取的方法示例

由于需要使用一个纯单词组成的文件,在网上下载到了一个存放单词的文件,但是里面有中文的解释,那就需要做一下提取了。 文本的形式如下: 所见即所得,这个文本是有规律的,每个单词为一行,紧...

python字符串的方法与操作大全

一:字符串的方法与操作 *注意:首字母为l的为从左边操作,为r的方法为从右边操作 1.__contains__()判断是否包含 判断指定字符或字符串是否包含在一个字符串内,返回值为tru...