对Pytorch中Tensor的各种池化操作解析

yipeiwu_com5年前Python基础

AdaptiveAvgPool1d(N)

对一个C*H*W的三维输入Tensor, 池化输出为C*H*N, 即按照H轴逐行对W轴平均池化

>>> a = torch.ones(2,3,4)
>>> a[0,1,2] = 0
>>>> a
tensor([[[1., 1., 1., 1.],
     [1., 1., 0., 1.],
     [1., 1., 1., 1.]],

    [[1., 1., 1., 1.],
     [1., 1., 1., 1.],
     [1., 1., 1., 1.]]])
     
>>> nn.AdaptiveAvgPool1d(5)(a)
tensor([[[1.0000, 1.0000, 1.0000, 1.0000, 1.0000],
     [1.0000, 1.0000, 0.5000, 0.5000, 1.0000],
     [1.0000, 1.0000, 1.0000, 1.0000, 1.0000]],

    [[1.0000, 1.0000, 1.0000, 1.0000, 1.0000],
     [1.0000, 1.0000, 1.0000, 1.0000, 1.0000],
     [1.0000, 1.0000, 1.0000, 1.0000, 1.0000]]])
     
>>> nn.AdaptiveAvgPool1d(1)(a)
tensor([[[1.0000],
     [0.7500],
     [1.0000]],

    [[1.0000],
     [1.0000],
     [1.0000]]])

AdaptiveAvgPool2d((M,N))

对一个B*C*H*W的四维输入Tensor, 池化输出为B*C*M*N, 即按照C轴逐通道对H*W平面平均池化

>>> a = torch.ones(2,2,3,4)
>>> a[:,:,:,1] = 0
>>> a
tensor([[[[1., 0., 1., 1.],
     [1., 0., 1., 1.],
     [1., 0., 1., 1.]],

     [[1., 0., 1., 1.],
     [1., 0., 1., 1.],
     [1., 0., 1., 1.]]],


    [[[1., 0., 1., 1.],
     [1., 0., 1., 1.],
     [1., 0., 1., 1.]],

     [[1., 0., 1., 1.],
     [1., 0., 1., 1.],
     [1., 0., 1., 1.]]]])
     
>>> nn.AdaptiveAvgPool2d((1,2))(a)
tensor([[[[0.5000, 1.0000]],
     [[0.5000, 1.0000]]],
     
    [[[0.5000, 1.0000]],
     [[0.5000, 1.0000]]]])
     
>>> nn.AdaptiveAvgPool2d(1)(a)
tensor([[[[0.7500]],
     [[0.7500]]],

    [[[0.7500]],
     [[0.7500]]]])

AdaptiveAvgPool3d((M,N,K))

对一个B*C*D*H*W的五维输入Tensor, 池化输出为B*C*M*N*K, 即按照C轴逐通道对D*H*W平面平均池化

>>> a = torch.ones(1,2,2,3,4)
>>> a[0,0,:,:,0:2] = 0
>>> a
tensor([[[[[0., 0., 1., 1.],
      [0., 0., 1., 1.],
      [0., 0., 1., 1.]],
      
     [[0., 0., 1., 1.],
      [0., 0., 1., 1.],
      [0., 0., 1., 1.]]],

     [[[1., 1., 1., 1.],
      [1., 1., 1., 1.],
      [1., 1., 1., 1.]],

     [[1., 1., 1., 1.],
      [1., 1., 1., 1.],
      [1., 1., 1., 1.]]]]])
     
>>> nn.AdaptiveAvgPool3d((1,1,2))(a)
tensor([[[[[0., 1.]]],

     [[[1., 1.]]]]])
     
>>> nn.AdaptiveAvgPool3d(1)(a)
tensor([[[[[0.5000]]],

     [[[1.0000]]]]])

以上这篇对Pytorch中Tensor的各种池化操作解析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现在线程里运行scrapy的方法

本文实例讲述了Python实现在线程里运行scrapy的方法。分享给大家供大家参考。具体如下: 如果你希望在一个写好的程序里调用scrapy,就可以通过下面的代码,让scrapy运行在一...

解决Pycharm 包已经下载,但是运行代码提示找不到模块的问题

解决Pycharm 包已经下载,但是运行代码提示找不到模块的问题

问题产生: pycharm→settings→Project interpreter→下载matplotlib包 运行代码,出现以下提示:找不到‘matplotlib'模块ModuleN...

Python利用sqlacodegen自动生成ORM实体类示例

本文实例讲述了Python利用sqlacodegen自动生成ORM实体类。分享给大家供大家参考,具体如下: 在前面一篇《Python流行ORM框架sqlalchemy安装与使用》我们是手...

Django REST框架创建一个简单的Api实例讲解

Django REST框架创建一个简单的Api实例讲解

Create a Simple API Using Django REST Framework in Python WHAT IS AN API API stands for appli...

浅谈Python数据类型之间的转换

Python数据类型之间的转换 函数 描述 int(x [,base])...