关于Pytorch的MLP模块实现方式

yipeiwu_com6年前Python基础

MLP分类效果一般好于线性分类器,即将特征输入MLP中再经过softmax来进行分类。

具体实现为将原先线性分类模块:

self.classifier = nn.Linear(config.hidden_size, num_labels)

替换为:

self.classifier = MLP(config.hidden_size, num_labels)

并且添加MLP模块:

  class MLP(nn.Module):
    def __init__(self, input_size, common_size):
      super(MLP, self).__init__()
      self.linear = nn.Sequential(
        nn.Linear(input_size, input_size // 2),
        nn.ReLU(inplace=True),
        nn.Linear(input_size // 2, input_size // 4),
        nn.ReLU(inplace=True),
        nn.Linear(input_size // 4, common_size)
      )
 
    def forward(self, x):
      out = self.linear(x)
      return out

看一下模块结构:

mlp = MLP(1000,3)
print(mlp)

以上这篇关于Pytorch的MLP模块实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Queue 实现生产者消费者模型(实例讲解)

Python中,队列是线程间最常用的交换数据的形式。 Python Queue模块有三种队列及构造函数: 1、Python Queue模块的FIFO队列先进先出。 class Queue...

详谈在flask中使用jsonify和json.dumps的区别

详谈在flask中使用jsonify和json.dumps的区别

flask提供了jsonify函数供用户处理返回的序列化json数据,而python自带的json库中也有dumps方法可以序列化json对象,那么在flask的视图函数中return它...

pytorch点乘与叉乘示例讲解

点乘 import torch x = torch.tensor([[3,3],[3,3]]) y = x*x #x.dot(x) z = torch.mul(x,x) #x.mul...

pyqt5 使用cv2 显示图片,摄像头的实例

如下所示: #! /usr/bin/python3 # coding = utf-8 # from PyQt5 import QtGui,QtCore,Qt import sys f...

Python3.7 基于 pycryptodome 的AES加密解密、RSA加密解密、加签验签

Python3.7 基于 pycryptodome 的AES加密解密、RSA加密解密、加签验签,具体代码如下所示: #!/usr/bin/env python # -*- codin...