np.random.seed() 的使用详解

yipeiwu_com5年前Python基础

在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同。

我们带着2个问题来进行下列实验

  1. np.random.seed()是否一直有效
  2. np.random.seed(Argument)的参数作用?

例子1

import numpy as np
 
if __name__ == '__main__':
 i = 0
 while (i < 6):
  if (i < 3):
   np.random.seed(0)
   print(np.random.randn(1, 5))
  else:
   print(np.random.randn(1, 5))
   pass
  i += 1
 
 print("-------------------")
 i = 0
 while (i < 2):
  print(np.random.randn(1, 5))
  i += 1
 print(np.random.randn(2, 5))
 
 print("---------重置----------")
 np.random.seed(0)
 i = 0
 while (i < 8):
  print(np.random.randn(1, 5))
  i += 1

可以看出,np.random.seed()对后面的随机数一直有效。

两次利用随机数种子后,即便是跳出循环后,生成随机数的结果依然是相同的。第一次跳出while循环后,进入第二个while循环,得到的两个随机数组确实和加了随机数种子不一样。但是,后面的加了随机数种子的,八次循环中的结果和前面的结果是一样的。说明,随机数种子对后面的结果一直有影响。同时,加了随机数种子以后,后面的随机数组都是按一定的顺序生成的。

例子2,随机数种子参数的作用

import numpy as np
 
if __name__ == '__main__':
 i = 0
 np.random.seed(0)
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1
 i = 0
 print("---------------------")
 np.random.seed(1)
 i = 0
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1

当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。并且在该参数确定后,其后面的随机数的生成顺序也就确定了。

所以,随机数种子的参数怎么选择?这个参数只是确定一下随机数的起始位置,可随意分配。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python写入数据到csv或xlsx文件的3种方法

本文实例为大家分享了三种方式使用python写数据到csv或xlsx文件,供大家参考,具体内容如下 第一种:使用csv模块,写入到csv格式文件 # -*- coding: utf-...

查看Python依赖包及其版本号信息的方法

查看Python依赖包及其版本号信息的方法

查看依赖包及对应的版本号信息的方法有两种: 方法1:pip list 方法2:pip freeze 这两个同时适用于Windows和Linux系统 当pip版本过低时,会出现list命...

python实现dict版图遍历示例

复制代码 代码如下:#_*_coding:utf_8_import sysimport os class Graph():    def __init__(...

Python3 实现串口两进程同时读写

通过两个进程分别读写串口,并把发送与接收到的内容记录在blog中,收到q时程序结束并退出 import threading,time import serial import str...

Python中的高级函数map/reduce使用实例

Python中的高级函数map/reduce使用实例

Python内建了map()和reduce()函数。 如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Lar...