np.random.seed() 的使用详解

yipeiwu_com5年前Python基础

在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同。

我们带着2个问题来进行下列实验

  1. np.random.seed()是否一直有效
  2. np.random.seed(Argument)的参数作用?

例子1

import numpy as np
 
if __name__ == '__main__':
 i = 0
 while (i < 6):
  if (i < 3):
   np.random.seed(0)
   print(np.random.randn(1, 5))
  else:
   print(np.random.randn(1, 5))
   pass
  i += 1
 
 print("-------------------")
 i = 0
 while (i < 2):
  print(np.random.randn(1, 5))
  i += 1
 print(np.random.randn(2, 5))
 
 print("---------重置----------")
 np.random.seed(0)
 i = 0
 while (i < 8):
  print(np.random.randn(1, 5))
  i += 1

可以看出,np.random.seed()对后面的随机数一直有效。

两次利用随机数种子后,即便是跳出循环后,生成随机数的结果依然是相同的。第一次跳出while循环后,进入第二个while循环,得到的两个随机数组确实和加了随机数种子不一样。但是,后面的加了随机数种子的,八次循环中的结果和前面的结果是一样的。说明,随机数种子对后面的结果一直有影响。同时,加了随机数种子以后,后面的随机数组都是按一定的顺序生成的。

例子2,随机数种子参数的作用

import numpy as np
 
if __name__ == '__main__':
 i = 0
 np.random.seed(0)
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1
 i = 0
 print("---------------------")
 np.random.seed(1)
 i = 0
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1

当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。并且在该参数确定后,其后面的随机数的生成顺序也就确定了。

所以,随机数种子的参数怎么选择?这个参数只是确定一下随机数的起始位置,可随意分配。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python Web框架之Django框架Form组件用法详解

本文实例讲述了Python Web框架之Django框架Form组件用法。分享给大家供大家参考,具体如下: Form简介 在HTTP中,表单(form标签),是用来提交数据的,其acti...

pycharm远程调试openstack的图文教程

pycharm远程调试openstack的图文教程

今天我要讲如何远程调试openstack。首先我们使用的工具是Pycharm. 1.首先介绍一下环境 我的openstack是使用rdo一键安装的,安装在一台centos的虚拟机上,虚拟...

Ubuntu 16.04 LTS中源码安装Python 3.6.0的方法教程

前提 官网上提供了 Mac 和 Windows 上的安装包和 Linux 上安装需要的源码。 下载地址如下: https://www.python.org/downloads/relea...

20招让你的Python飞起来!

今天分享的这篇文章,文字不多,代码为主。绝对干货,童叟无欺,主要分享了提升 Python 性能的 20 个技巧,教你如何告别慢Python。原文作者 开元,全栈程序员,使用 Python...

django session完成状态保持的方法

django session完成状态保持的方法

本例使用登录页面演示,session的状态保持功能。 说明:因为http是无状态的,客户端请求一次页面后,就结束了,当再次访问时,服务器端并不知道浏览器此访问过什么。所以这样就需要状态保...