np.random.seed() 的使用详解

yipeiwu_com5年前Python基础

在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同。

我们带着2个问题来进行下列实验

  1. np.random.seed()是否一直有效
  2. np.random.seed(Argument)的参数作用?

例子1

import numpy as np
 
if __name__ == '__main__':
 i = 0
 while (i < 6):
  if (i < 3):
   np.random.seed(0)
   print(np.random.randn(1, 5))
  else:
   print(np.random.randn(1, 5))
   pass
  i += 1
 
 print("-------------------")
 i = 0
 while (i < 2):
  print(np.random.randn(1, 5))
  i += 1
 print(np.random.randn(2, 5))
 
 print("---------重置----------")
 np.random.seed(0)
 i = 0
 while (i < 8):
  print(np.random.randn(1, 5))
  i += 1

可以看出,np.random.seed()对后面的随机数一直有效。

两次利用随机数种子后,即便是跳出循环后,生成随机数的结果依然是相同的。第一次跳出while循环后,进入第二个while循环,得到的两个随机数组确实和加了随机数种子不一样。但是,后面的加了随机数种子的,八次循环中的结果和前面的结果是一样的。说明,随机数种子对后面的结果一直有影响。同时,加了随机数种子以后,后面的随机数组都是按一定的顺序生成的。

例子2,随机数种子参数的作用

import numpy as np
 
if __name__ == '__main__':
 i = 0
 np.random.seed(0)
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1
 i = 0
 print("---------------------")
 np.random.seed(1)
 i = 0
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1

当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。并且在该参数确定后,其后面的随机数的生成顺序也就确定了。

所以,随机数种子的参数怎么选择?这个参数只是确定一下随机数的起始位置,可随意分配。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中使用支持向量机(SVM)算法

Python中使用支持向量机(SVM)算法

在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别、分类(异常值检测)以及回归分析。 其具有以下特征: &n...

Python学习笔记(二)基础语法

学习Python,基本语法不是特别难,有了C的基本知识,理解比较容易。本文的主要内容是Python基础语法,学完后,能熟练使用就好。(开发环境依然是Python2.7,简单使用)一,基本...

python各层级目录下import方法代码实例

这篇文章主要介绍了python各层级目录下import方法代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 以前经常使用pyth...

Python通过90行代码搭建一个音乐搜索工具

下面小编把具体实现代码给大家分享如下: 之前一段时间读到了这篇博客,其中描述了作者如何用java实现国外著名音乐搜索工具shazam的基本功能。其中所提到的文章又将我引向了关于shaza...

Django组件cookie与session的具体使用

Django组件cookie与session的具体使用

一、会话跟踪技术   1、什么是会话跟踪技术 我们需要先了解一下什么是会话!可以把会话理解为客户端与服务器之间的一次会晤,在一次会晤中可能会包含多次请求和响应。例如你给10086打个电话...