np.random.seed() 的使用详解

yipeiwu_com6年前Python基础

在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同。

我们带着2个问题来进行下列实验

  1. np.random.seed()是否一直有效
  2. np.random.seed(Argument)的参数作用?

例子1

import numpy as np
 
if __name__ == '__main__':
 i = 0
 while (i < 6):
  if (i < 3):
   np.random.seed(0)
   print(np.random.randn(1, 5))
  else:
   print(np.random.randn(1, 5))
   pass
  i += 1
 
 print("-------------------")
 i = 0
 while (i < 2):
  print(np.random.randn(1, 5))
  i += 1
 print(np.random.randn(2, 5))
 
 print("---------重置----------")
 np.random.seed(0)
 i = 0
 while (i < 8):
  print(np.random.randn(1, 5))
  i += 1

可以看出,np.random.seed()对后面的随机数一直有效。

两次利用随机数种子后,即便是跳出循环后,生成随机数的结果依然是相同的。第一次跳出while循环后,进入第二个while循环,得到的两个随机数组确实和加了随机数种子不一样。但是,后面的加了随机数种子的,八次循环中的结果和前面的结果是一样的。说明,随机数种子对后面的结果一直有影响。同时,加了随机数种子以后,后面的随机数组都是按一定的顺序生成的。

例子2,随机数种子参数的作用

import numpy as np
 
if __name__ == '__main__':
 i = 0
 np.random.seed(0)
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1
 i = 0
 print("---------------------")
 np.random.seed(1)
 i = 0
 while (i < 3):
  print(np.random.randn(1, 5))
  i += 1

当随机数种子参数为0和1时,生成的随机数结果相同。说明该参数指定了一个随机数生成的起始位置。每个参数对应一个位置。并且在该参数确定后,其后面的随机数的生成顺序也就确定了。

所以,随机数种子的参数怎么选择?这个参数只是确定一下随机数的起始位置,可随意分配。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3 线性回归验证方法

如下所示: #-*- coding: utf-8 -*- import pandas as pd import numpy as np from patsy.highlevel im...

Python 中的with关键字使用详解

在 Python 2.5 中, with 关键字被加入。它将常用的 try ... except ... finally ... 模式很方便的被复用。看一个最经典的例子: with...

Python爬豆瓣电影实例

Python爬豆瓣电影实例

文件结构 html_downloader.py - 下载网页html内容 #!/usr/bin/python # -*- coding: UTF-8 -*- import urll...

10招!看骨灰级Pythoner玩转Python的方法

10招!看骨灰级Pythoner玩转Python的方法

pandas是基于numpy构建的,使数据分析工作变得更快更简单的高级数据结构和操作工具。本文为大家带来10个玩转Python的小技巧,学会了分分钟通关变大神! 1. read_cs...

Python定时执行之Timer用法示例

本文实例讲述了Python定时执行之Timer用法。分享给大家供大家参考。具体分析如下: java中Timer的作用亦是如此。python中的线程提供了java线程功能的子集。 #!...