Pytorch之finetune使用详解

yipeiwu_com5年前Python基础

finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤:

1.固定参数

  for name, child in model.named_children():
    for param in child.parameters():
      param.requires_grad = False

后,只传入 需要反传的参数,否则会报错

filter(lambda param: param.requires_grad, model.parameters())

2.调低学习率,加快衰减

finetune是在预训练模型上进行微调,学习速率不能太大。

目前不清楚:学习速率降低的幅度可以更快一些。这样以来,在使用step的策略时,stepsize可以更小一些。

直接从原始数据训练的base_lr一般为0.01,微调要比0.01小,置为0.001

要比直接训练的小一些,直接训练的stepsize为100000,finetune的stepsize: 50000

3. 固定bn或取消dropout:

batchnorm会影响训练的效果,随着每个batch,追踪样本的均值和方差。对于固定的网络,bn应该使用全局的数值

def freeze_bn(self):
  for layer in self.modules():
    if isinstance(layer, nn.BatchNorm2d):
      layer.eval()

训练时,model.train()会修改模式,freeze_zn()应该在这里后面

4.过滤参数

训练时,对于优化器,应该只传入需要改变的参数,否则会报错

filter(lambda p: p.requires_grad, model.parameters())

以上这篇Pytorch之finetune使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

解决Python下json.loads()中文字符出错的问题

解决Python下json.loads()中文字符出错的问题

Python:2.7 IDE:Pycharm5.0.3 今天遇到一个问题,就是在使用json.load()时,中文字符被转化为Unicode码的问题,解决方案找了半天,无解。全部代码...

浅谈使用Python内置函数getattr实现分发模式

本文研究的主要是使用Python内置函数getattr实现分发模式的相关问题,具体介绍如下。 getattr 常见的使用模式是作为一个分发者。举个例子,如果你有一个程序可以以不同的格式输...

Python之web模板应用

Python的web模板,其实就是在HTML文档中使用控制语句和表达语句替换HTML文档中的变量来控制HTML的显示格式,Python的web模板可以更加灵活和方便的控制HTML的显示,...

详解python 字符串和日期之间转换 StringAndDate

python 字符串和日期之间转换 StringAndDate           这里给出实现...

Python数据结构与算法之图结构(Graph)实例分析

Python数据结构与算法之图结构(Graph)实例分析

本文实例讲述了Python数据结构与算法之图结构(Graph)。分享给大家供大家参考,具体如下: 图结构(Graph)——算法学中最强大的框架之一。树结构只是图的一种特殊情况。 如果我们...