Pytorch之finetune使用详解

yipeiwu_com6年前Python基础

finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤:

1.固定参数

  for name, child in model.named_children():
    for param in child.parameters():
      param.requires_grad = False

后,只传入 需要反传的参数,否则会报错

filter(lambda param: param.requires_grad, model.parameters())

2.调低学习率,加快衰减

finetune是在预训练模型上进行微调,学习速率不能太大。

目前不清楚:学习速率降低的幅度可以更快一些。这样以来,在使用step的策略时,stepsize可以更小一些。

直接从原始数据训练的base_lr一般为0.01,微调要比0.01小,置为0.001

要比直接训练的小一些,直接训练的stepsize为100000,finetune的stepsize: 50000

3. 固定bn或取消dropout:

batchnorm会影响训练的效果,随着每个batch,追踪样本的均值和方差。对于固定的网络,bn应该使用全局的数值

def freeze_bn(self):
  for layer in self.modules():
    if isinstance(layer, nn.BatchNorm2d):
      layer.eval()

训练时,model.train()会修改模式,freeze_zn()应该在这里后面

4.过滤参数

训练时,对于优化器,应该只传入需要改变的参数,否则会报错

filter(lambda p: p.requires_grad, model.parameters())

以上这篇Pytorch之finetune使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

cProfile Python性能分析工具使用详解

cProfile Python性能分析工具使用详解

前言 Python自带了几个性能分析的模块:profile、cProfile和hotshot,使用方法基本都差不多,无非模块是纯Python还是用C写的。本文介绍cProfile。 例子...

python将一个英文语句以单词为单位逆序排放的方法

例如“I am a boy”,逆序排放后为“boy a am I”所有单词之间用一个空格隔开,语句中除了英文字母外,不再包含其他字符。 list_number = list(inpu...

利用python编写一个图片主色转换的脚本

利用python编写一个图片主色转换的脚本

前言 最近由于项目特需老是替换主题颜色,同时app里一些资源icon图片主色也要改,美工不提供切图只能靠自己了,开始想在iconfont上面找但是数量比较多太浪费时间,然后就想到pyth...

Python 装饰器@,对函数进行功能扩展操作示例【开闭原则】

本文实例讲述了Python 装饰器@,对函数进行功能扩展操作。分享给大家供大家参考,具体如下: 装饰器可以对原函数进行功能扩展,但还不需要修改原函数的内容(开闭原则),也不需要修改原函数...

python递归计算N!的方法

本文实例讲述了python递归计算N!的方法。分享给大家供大家参考。具体实现方法如下: def factorial(n): if n == 0: return 1 e...