Pytorch之finetune使用详解

yipeiwu_com6年前Python基础

finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤:

1.固定参数

  for name, child in model.named_children():
    for param in child.parameters():
      param.requires_grad = False

后,只传入 需要反传的参数,否则会报错

filter(lambda param: param.requires_grad, model.parameters())

2.调低学习率,加快衰减

finetune是在预训练模型上进行微调,学习速率不能太大。

目前不清楚:学习速率降低的幅度可以更快一些。这样以来,在使用step的策略时,stepsize可以更小一些。

直接从原始数据训练的base_lr一般为0.01,微调要比0.01小,置为0.001

要比直接训练的小一些,直接训练的stepsize为100000,finetune的stepsize: 50000

3. 固定bn或取消dropout:

batchnorm会影响训练的效果,随着每个batch,追踪样本的均值和方差。对于固定的网络,bn应该使用全局的数值

def freeze_bn(self):
  for layer in self.modules():
    if isinstance(layer, nn.BatchNorm2d):
      layer.eval()

训练时,model.train()会修改模式,freeze_zn()应该在这里后面

4.过滤参数

训练时,对于优化器,应该只传入需要改变的参数,否则会报错

filter(lambda p: p.requires_grad, model.parameters())

以上这篇Pytorch之finetune使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用turtle库绘制时钟

python使用turtle库绘制时钟

Python函数库众多,而且在不断更新,所以学习这些函数库最有效的方法,就是阅读Python官方文档。同时借助Google和百度。 本文介绍的turtle库对应的官方文档地址 绘制动态钟...

Python实现LRU算法的2种方法

LRU:least recently used,最近最少使用算法。它的使用场景是:在有限的空间中存储对象时,当空间满时,会按一定的原则删除原有的对象,常用的原则(算法)有LRU,FIFO...

一篇文章搞定Python操作文件与目录

一篇文章搞定Python操作文件与目录

前言 文件和目录操作是很常见的功能,这里做个简单的总结,包括注意事项和实际的实现代码,基本日常开发都够用了 目录操作 判断目录或是文件是否存在 os.path.exists(p...

python使用在线API查询IP对应的地理位置信息实例

这篇文章中的内容是来源于去年我用美国的VPS搭建博客的初始阶段,那是有很多恶意访问,我就根据access log中的源IP来进行了很多统计,同时我也将访问量最高的恶意访问的源IP拿来查询...

Python安装tar.gz格式文件方法详解

Python安装tar.gz格式文件方法详解

这篇文章主要介绍了Python安装tar.gz格式文件方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 有的库没有找到对应的.w...