Python内置数据类型list各方法的性能测试过程解析

yipeiwu_com5年前Python基础

这篇文章主要介绍了Python内置数据类型list各方法的性能测试过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

测试环境

本文所涉及的代码均在MacOS系统与CentOS7下测试,使用的Python版本为3.6.8。

测试模块

测试用的模块是Python内置的timeit模块:

timeit模块可以用来测试一小段Python代码的执行速度。

Timer类

class timeit.Timer(stmt='pass', setup='pass', timer=<timer function>)

Timer是测量小段代码执行速度的类。

stmt参数是要测试的代码语句(statment);

setup参数是运行代码时需要的设置;

timer参数是一个定时器函数,与平台有关。

Timer类的timeit方法

timeit.Timer.timeit(number=1000000)

Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数,默认为1000000次。方法返回执行代码的平均耗时,一个float类型的秒数。

列表内置方法的性能测试

我们知道,生成一个列表可以使用列表生成式或者append、insert、extend这些方法,现在我们来看一下这些方法的执行效率:

from timeit import Timer


def test_list():
  lst = list(range(1000))

def test_generation():
  lst = [i for i in range(1000)]


def test_append():
  lst = []
  for i in range(1000):
    lst.append(i)

def test_add():
  lst = []
  for i in range(1000):
    lst += [i]

# 在列表的头部insert
def test_insert_zero():
  lst = []
  for i in range(1000):
    lst.insert(0,i)

# 在列表的尾部insert
def test_insert_end():
  lst = []
  for i in range(1000):
    lst.insert(-1,i)

def test_extend():
  lst = []
  lst.extend(list(range(1000)))


t1 = Timer("test_list()","from __main__ import test_list")
print(f"test_list takes {t1.timeit(number=1000)} seconds")

t2 = Timer("test_generation()","from __main__ import test_generation")
print(f"test_generation takes {t2.timeit(number=1000)} seconds")

t3 = Timer("test_append()","from __main__ import test_append")
print(f"test_append takes {t3.timeit(number=1000)} seconds")

t4 = Timer("test_add()","from __main__ import test_add")
print(f"test_add takes {t4.timeit(number=1000)} seconds")

t5 = Timer("test_insert_zero()","from __main__ import test_insert_zero")
print(f"test_insert_zero takes {t5.timeit(number=1000)} seconds")

t6 = Timer("test_insert_end()","from __main__ import test_insert_end")
print(f"test_insert_end takes {t6.timeit(number=1000)} seconds")

t7 = Timer("test_extend()","from __main__ import test_extend")
print(f"test_extend takes {t7.timeit(number=1000)} seconds")

我们先看看在MacOS系统下,执行上面这段代码的结果:

"""
test_list takes 0.012904746999993222 seconds
test_generation takes 0.03530399600003875 seconds
test_append takes 0.0865129750000051 seconds
test_add takes 0.08066114099983679 seconds
test_insert_zero takes 0.30594958500023495 seconds
test_insert_end takes 0.1522782449992519 seconds
test_extend takes 0.017534753999825625 seconds
"""

我们可以看到:直接使用list方法强转的效率最高,其次是使用列表生成式,而append与直接加的方式紧随其后并且二者的效率相当;insert方法的执行效率最低——并且从头插入的效率要低于从尾部插入的效率!最后我们将强转的列表使用extend方法放入到新的列表中的过程效率并没有减少多少。

然后试试在Linux系统下的执行结果:

列表pop方法的性能测试

pop可以从第0各位置删除元素,也可以从最后位置删除元素(默认删除最后面的元素),现在我们来测试一下两种从不同位置删除元素的性能对比:

from timeit import Timer

def test_pop_zero():
  lst = list(range(2000))
  for i in range(2000):
    lst.pop(0)


def test_pop_end():
  lst = list(range(2000))
  for i in range(2000):
    lst.pop()
t1 = Timer("test_pop_zero()","from __main__ import test_pop_zero")
print(f"test_pop_zero takes {t1.timeit(number=1000)} seconds")

t2 = Timer("test_pop_end()","from __main__ import test_pop_end")
print(f"test_pop_end takes {t2.timeit(number=1000)} seconds")

在MacOS下程序的执行结果为:

test_pop_zero takes 0.5015365449999081 seconds

test_pop_end takes 0.22170215499954793 seconds

然后我们来试试Linux系统中的执行结果:

可以看到:从列表的尾部删除元素的效率要比从头部删除的效率高很多!

关于列表insert方法的一个小坑

如果想使用insert方法生成一个列表[0,1,2,3,4,5]的话(当然使用insert方法效率会低很多,建议使用其他的方法)会有一个这样的问题,在此记录一下:

def test_insert():
  lst = []
  for i in range(6):
    lst.insert(-1,i)
    print(lst)

test_insert()

结果竟然是这样的——第一个元素竟然一直在最后!

[0]
[1, 0]
[1, 2, 0]
[1, 2, 3, 0]
[1, 2, 3, 4, 0]
[1, 2, 3, 4, 5, 0]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python数据结构之二叉树的统计与转换实例

python数据结构之二叉树的统计与转换实例

一、获取二叉树的深度就是二叉树最后的层次,如下图: 实现代码:复制代码 代码如下:def getheight(self):     &n...

Python CSV模块使用实例

举几个例子来介绍一下,Python 的 CSV模块的使用方法,包括,reader, writer, DictReader, DictWriter.register_dialect 一直非...

Ubuntu下使用Python实现游戏制作中的切分图片功能

Ubuntu下使用Python实现游戏制作中的切分图片功能

本文实例讲述了Ubuntu下使用Python实现游戏制作中的切分图片功能。分享给大家供大家参考,具体如下: why 拿到一个人物行走的素材,要用TexturePacker打包。Text...

python pip安装包出现:Failed building wheel for xxx错误的解决

出现原因:缺失相应的whl文件。 解决办法:下载并安装对应的whl文件。 提供一个whl文件的下载网址:http://www.lfd.uci.edu/~gohlke/pythonlibs...

tensorflow使用神经网络实现mnist分类

本文实例为大家分享了tensorflow神经网络实现mnist分类的具体代码,供大家参考,具体内容如下 只有两层的神经网络,直接上代码 #引入包 import tensorflow...