Python中的复制操作及copy模块中的浅拷贝与深拷贝方法

yipeiwu_com5年前Python基础

程序中常常需要复制一个对象, 按思路应该是这样的

a = [1, 2, 3]
b = a

# [1, 2, 3]
print b 

已经复制好了,但是现在得改变一下第一个元素的值把它改成5

b[0] = 5 

# [5, 2, 3]
print b 

# [5, 2, 3]
print a 

我改变了b的第一个元素的值,但是a的值也改变了,这是因为python中的=是引用.a和b指向的是相同的列表,所以改变列表会出现以上的结果.

解决方法是切片操作

a = [1, 2, 3]
b = a[:]
b[0] = 4

# [1, 2, 3]
# [4, 2, 3]
print a
print b

但是在嵌套列表的时候呢,试一试

a = [[1,2,3], 4, 5]
b = a[:]
b[1] = 0 

# [[1,2,3], 4, 5]
# [[1,2,3], 0, 5]
print a
print b

恩!没什么问题,在试一试嵌套列表元素

a = [[1,2,3], 4, 5]
b = a[:]
b[0][0] = 5

# [[5,2,3], 4, 5]
# [[5,2,3], 4, 5]
print a
print b
b = a[:]

a的值还是改变了,切片复制只对该对象进行拷贝不会对子元素进行拷贝

copy 模块

copy模块用于对象的拷贝操作。该模块非常简单,只提供了两个主要的方法: copy.copy 与 copy.deepcopy ,分别表示浅复制与深复制。什么是浅复制,什么是深复制,网上有一卡车一卡车的资料,这里不作详细介绍。复制操作只对复合对象有效。用简单的例子来分别介绍这两个方法。

浅复制只复制对象本身,没有复制该对象所引用的对象。

#coding=gbk
import copy
l1 = [1, 2, [3, 4]]
l2 = copy.copy(l1)
print l1
print l2
l2[2][0] = 50
print l1
print l2

结果:

[1, 2, [3, 4]]
[1, 2, [3, 4]]
[1, 2, [50, 4]]
[1, 2, [50, 4]]

同样的代码,使用深复制,结果就不一样:

import copy
l1 = [1, 2, [3, 4]]
l2 = copy.deepcopy(l1)
print l1
print l2
l2[2][0] = 50
print l1
print l2

结果:

[1, 2, [3, 4]]
[1, 2, [3, 4]]
[1, 2, [3, 4]]
[1, 2, [50, 4]]

改变copy的默认行为

在定义类的时候,通过定义__copy__和__deepcopy__方法,可以改变copy的默认行为。下面是一个简单的例子:

class CopyObj(object):
  def __repr__(self):
    return "CopyObj"
  
  def __copy__(self):
    return "Hello"
obj = CopyObj()
obj1 = copy.copy(obj)
print obj
print obj1

结果:

CopyObj
Hello

相关文章

python读取图片并修改格式与大小的方法

本文实例为大家分享了python读取图片并修改文件大小的具体代码,供大家参考,具体内容如下 # Author:NDK # -*- coding:utf-8 -*- from PIL...

Python使用matplotlib绘制随机漫步图

Python使用matplotlib绘制随机漫步图

本文我们来做一个简单的随机漫步数据图,进一步了解matplotlib的使用, 使用Python生成随机漫步数据,再使用matplotlib绘制出来, 随机漫步是这样行走得到的路径: 每次...

Python求正态分布曲线下面积实例

Python求正态分布曲线下面积实例

正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。这种分布的概率密度函数为: 其中,μ为均值,σ为标准差。 求正态分布曲线下面积有3σ原则: 正态曲线下,横轴区间(μ-σ,μ+...

python实现简易数码时钟

python实现简易数码时钟

最近迷上了Python,要说为什么呢?Python语法简单,功能强大,有广泛的第三方库能快速编程实现自己的想法(无需重复去造轮子)。就像某位前辈说的:“人生苦短,学会偷懒…”,配置好su...

pytorch 在sequential中使用view来reshape的例子

pytorch中view是tensor方法,然而在sequential中包装的是nn.module的子类, 因此需要自己定义一个方法: import torch.nn as nn c...