详解Python list 与 NumPy.ndarry 切片之间的对比

yipeiwu_com6年前Python基础

详解Python list 与 NumPy.ndarry 切片之间的区别

实例代码:

# list 切片返回的是不原数据,对新数据的修改不会影响原数据
In [45]: list1 = [1, 2, 3, 4, 5] 

In [46]: list2 = list1[:3]

In [47]: list2
Out[47]: [1, 2, 3]

In [49]: list2[1] = 1999

# 原数据没变
In [50]: list1
Out[50]: [1, 2, 3, 4, 5]

In [51]: list2
Out[51]: [1, 1999, 3]



# 而 NumPy.ndarry 的切片返回的是原数据
In [52]: arr = np.array([1, 2, 3, 4, 5])

In [53]: arr
Out[53]: array([1, 2, 3, 4, 5])

In [54]: arr1 = arr[:3]

In [55]: arr1
Out[55]: array([1, 2, 3])

In [56]: arr1[0] = 989

In [57]: arr1
Out[57]: array([989,  2,  3])

# 修改了原数据
In [58]: arr
Out[58]: array([989,  2,  3,  4,  5])

# 若希望得到原数据的副本, 可以用 copy()
In [59]: arr2 = arr[:3].copy()

In [60]: arr2
Out[60]: array([989,  2,  3])

In [61]: arr2[1] = 99282

In [62]: arr2
Out[62]: array([ 989, 99282,   3])

# 原数据没被修改
In [63]: arr
Out[63]: array([989,  2,  3,  4,  5])

以上就是Python list 与 NumPy.ndarry 切片之间的区别的详解,如有疑问请留言或者到本站社区留言,感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

相关文章

Python 使用with上下文实现计时功能

引言 with 语句是从 Python 2.5 开始引入的一种与异常处理相关的功能(2.5 版本中要通过 from __future__ import with_statement 导...

python中的print()输出

1.普通的输出: print(str)#str是任意一个字符串,数字··· 2.格式化输出: print('1,2,%s,%d'%('asd',4)) 1,2,asd,4 与C语...

Python 实现淘宝秒杀的示例代码

新手学习Python,之前在网上看见一位朋友写的40行Python代码搞定京东秒杀,想在淘宝上帮女朋友抢玩偶,所以就照猫画虎的写了下淘宝的秒杀脚本,经自己实验可行。直接上代码: #-...

解决pytorch GPU 计算过程中出现内存耗尽的问题

Pytorch GPU运算过程中会出现:“cuda runtime error(2): out of memory”这样的错误。通常,这种错误是由于在循环中使用全局变量当做累加器,且累加...

操作Windows注册表的简单的Python程序制作教程

通过Python操作注册表有两种方式,第一种是通过Python的内置模块 _winreg;另一种方式就是Win32 Extension For Python 的win32api模块,但是...