解决pytorch GPU 计算过程中出现内存耗尽的问题

yipeiwu_com6年前Python基础

Pytorch GPU运算过程中会出现:“cuda runtime error(2): out of memory”这样的错误。通常,这种错误是由于在循环中使用全局变量当做累加器,且累加梯度信息的缘故,用官方的说法就是:"accumulate history across your training loop"。在默认情况下,开启梯度计算的Tensor变量是会在GPU保持他的历史数据的,所以在编程或者调试过程中应该尽力避免在循环中累加梯度信息。

下面举个栗子:

上代码:

total_loss=0
for i in range(10000):
  optimizer.zero_grad()
  output=model(input)
  loss=criterion(output)
  loss.backward()
  optimizer.step()
  total_loss+=loss
  #这里total_loss是跨越循环的变量,起着累加的作用,
  #loss变量是带有梯度的tensor,会保持历史梯度信息,在循环过程中会不断积累梯度信息到tota_loss,占用内存

以上例子的修正方法是在循环中的最后一句修改为:total_loss+=float(loss),利用类型变换解除梯度信息,这样,多次累加不会累加梯度信息。

局部变量逗留导致内存泄露

局部变量通常在变量作用域之外会被Python自动销毁,在作用域之内,不需要的临时变量可以使用del x来销毁。

在设计Linear Layers 的时候,尽量让其规模小点

对于nn.Linear(m,n)这样规模的线性函数,他的空间规模为O(mn),除此规模的空间来容纳参数意外,还需要同样规模的空间来存储梯度,由此很容易造成GPU空间溢出。

相关的进程管理bash cmd

nvidia-smi监控GPU,

watch -n 1 nvidia-smi实时监控GPU,

watch -n 1 lscpu实时监控CPU,

ps -elf进程查看,

ps -elf | grep python查看Python子进程,

kill -9 [PID]杀死进程PID。

Referance:

Pytorch documentations

以上这篇解决pytorch GPU 计算过程中出现内存耗尽的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

记录Python脚本的运行日志的方法

一、logging模块 Python中有一个模块logging,可以直接记录日志 # 日志级别 # CRITICAL 50 # ERROR 40 # WARNING 30 #...

Python使用pydub库对mp3与wav格式进行互转的方法

Python使用pydub库对mp3与wav格式进行互转的方法

我们需要用到一个叫pydub的类库, pydub是python的高级一个音频处理库,可以让你以一种不那么蠢的方法处理音频。---开发者原话 https://github.com/ji...

机器学习经典算法-logistic回归代码详解

机器学习经典算法-logistic回归代码详解

一、算法简要 我们希望有这么一种函数:接受输入然后预测出类别,这样用于分类。这里,用到了数学中的sigmoid函数,sigmoid函数的具体表达式和函数图象如下: 可以较为清楚的看到,...

在Django框架中运行Python应用全攻略

我们来假定下面的这些概念、字段和关系:     一个作者有姓,有名及email地址。     出版商有名称,地址,所...

Django实现表单验证

本文实例为大家分享了Django实现表单验证的具体代码,供大家参考,具体内容如下 models.py class Users(models.Model): nickname =...