解决pytorch GPU 计算过程中出现内存耗尽的问题

yipeiwu_com6年前Python基础

Pytorch GPU运算过程中会出现:“cuda runtime error(2): out of memory”这样的错误。通常,这种错误是由于在循环中使用全局变量当做累加器,且累加梯度信息的缘故,用官方的说法就是:"accumulate history across your training loop"。在默认情况下,开启梯度计算的Tensor变量是会在GPU保持他的历史数据的,所以在编程或者调试过程中应该尽力避免在循环中累加梯度信息。

下面举个栗子:

上代码:

total_loss=0
for i in range(10000):
  optimizer.zero_grad()
  output=model(input)
  loss=criterion(output)
  loss.backward()
  optimizer.step()
  total_loss+=loss
  #这里total_loss是跨越循环的变量,起着累加的作用,
  #loss变量是带有梯度的tensor,会保持历史梯度信息,在循环过程中会不断积累梯度信息到tota_loss,占用内存

以上例子的修正方法是在循环中的最后一句修改为:total_loss+=float(loss),利用类型变换解除梯度信息,这样,多次累加不会累加梯度信息。

局部变量逗留导致内存泄露

局部变量通常在变量作用域之外会被Python自动销毁,在作用域之内,不需要的临时变量可以使用del x来销毁。

在设计Linear Layers 的时候,尽量让其规模小点

对于nn.Linear(m,n)这样规模的线性函数,他的空间规模为O(mn),除此规模的空间来容纳参数意外,还需要同样规模的空间来存储梯度,由此很容易造成GPU空间溢出。

相关的进程管理bash cmd

nvidia-smi监控GPU,

watch -n 1 nvidia-smi实时监控GPU,

watch -n 1 lscpu实时监控CPU,

ps -elf进程查看,

ps -elf | grep python查看Python子进程,

kill -9 [PID]杀死进程PID。

Referance:

Pytorch documentations

以上这篇解决pytorch GPU 计算过程中出现内存耗尽的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pycharm 在windows上编辑代码用linux执行配置的方法

pycharm 在windows上编辑代码用linux执行配置的方法

如下所示: 如上图所示点击右上角 ‘configure python interpreter' 弹窗如上图所示,选择项目, ‘project interpreter'  对应...

Python实现带百分比的进度条

大家在安装程序或下载文件时,通常都能看到进度条,提示你当前任务的进度。其实,在python中实现这个功能很简单,下面是具体代码。在实际应用中,你完全可以根据自己的要求进行修改!比如,示例...

python笔记之mean()函数实现求取均值的功能代码

用法:mean(matrix,axis=0)  其中 matrix为一个矩阵,axis为参数 以m * n矩阵举例: axis 不设置值,对 m*n 个数求均值,返回一个实数...

Python中的 is 和 == 以及字符串驻留机制详解

is 和 == 先了解下官方文档中关于 is 和 == 的概念。is 表示的是对象标示符(object identity),而 == 表示的是相等(equality);is 的作用是用...

Python利用Django如何写restful api接口详解

Python利用Django如何写restful api接口详解

前言 用Python如何写一个接口呢,首先得要有数据,可以用我们在网站上爬的数据,在上一篇文章中写了如何用Python爬虫,有兴趣的可以看看:/post/141661.htm 大量的数...