浅析Python中的赋值和深浅拷贝

yipeiwu_com6年前Python基础

python中,A object  = B object  是一种赋值操作,赋的值不是一个对象在内存中的空间,而只是这个对象在内存中的位置 。

此时当B对象里面的内容发生更改的时候,A对象也自然而然的会跟着更改。

name = ["root","admin"]
cp_name = name # 对cp_name进行赋值操作
# 对name列表进行插入
name.append('root_temp')
print(name,cp_name) # ['root', 'admin', 'root_temp'] ['root', 'admin', 'root_temp']
print(id(name),id(cp_name)) # 23991960 23991960

而想要进行浅拷贝或者深拷贝,就需要引入copy模块 。

首先来说下浅拷贝,当进行浅拷贝时,使用copy.copy()方法。

import copy
name = ["root","admin"]
# 进行浅拷贝操作
cp_name = copy.copy(name)
# 查看cp_name,name
print(name,cp_name) # ['root', 'admin'] ['root', 'admin'] 拷贝成功
#查看地址
print(id(name),id(cp_name)) # 21146920 21147160 内存地址并不相同
# 尝试对name进行更改
name.append('root_temp')
# 查看cp_name是否更改
print(cp_name) # ['root', 'admin'] 内容并没有更改

A = copy.copy(B) 此时A对象相当于把B对象中的内容给完成的拷贝了一份,存储在了一份新的内存地址当中。

其中有一点需要注意,如下:

import copy
name = ['root','admin',['root_temp','admin_temp']]
cp_name = copy.copy(name)
# 查看两个对象的地址
print(id(name),id(cp_name)) # 24358504 24428952 二者的地址并不相同
# 对name 进行更改
name.append('test')
# 查看cp_name是否更改
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp']] cp_name并未更改
# 在来对name中的列表对象进行更改
name[2].append('ttttt')
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp', 'ttttt']] 发现cp_name内容发生了变化

在上面的代码中,通过copy.copy()方法把name对象浅拷贝给了cp_name,此时二者的内容相同,但是地址不同,说明通过浅拷贝后,cp_name相当于重新开辟了一块内存空间用来存储拷贝过来的内容。所以说,当name.append()第一次插入值的时候,cp_name对象没有变化,因为cp_name和name 处于两个不同的内存空间,是独立的。

而浅拷贝的问题在于,只能够拷贝第一层的内容,至于说第二层以及第三层或者第n层,对于浅拷贝来说都是无能为力的,只能简单的拷贝一份内存地址。

所以说,对于name 这个对象中,列表第一层发生更改,是不会影响cp_name的,而一旦更改了第二层或者第n层的内容,cp_name都会被影响,因为此时的cp_name对象里面子列表是与name的子列表共享相同的内存空间。

而如果想要对第一层以及第二层甚至第n层都进行彻底的拷贝,那么就需要使用深层拷贝。

深层拷贝需要使用copy模块的deepcopy()方法。

import copy
name = ['root','admin',['root_temp','admin_temp']]
cp_name = copy.deepcopy(name)
# 查看二者的id
print(id(name),id(cp_name)) # 29863528 29933976 地址不同,说明开辟了处于两块不同的空间
# 对name 第一层以及第二层进行更改
name.append('t1')
name[2].append('t2')
# 查看cp_name是否内容发生变化
print(cp_name) # ['root', 'admin', ['root_temp', 'admin_temp']] 内容并未发生更改

此时,cp_name对象并不会被name所影响,无论name对象的第一层列表还是第n层的更改和变化,都不会影响cp_name,因为此时通过深层拷贝,两个对象已经完全的处于两个不同的独立内存空间,而这也就是深层拷贝。

总结

以上所述是小编给大家介绍的Python中的赋值和深浅拷贝,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!

相关文章

朴素贝叶斯Python实例及解析

本文实例为大家分享了Python朴素贝叶斯实例代码,供大家参考,具体内容如下 #-*- coding: utf-8 -*- #添加中文注释 from numpy import *...

几种实用的pythonic语法实例代码

前言 python 是一门简单而优雅的语言,可能是过于简单了,不用花太多时间学习就能使用,其实 python 里面还有一些很好的特性,能大大简化你代码的逻辑,提高代码的可读性。 所谓Py...

解决python3捕获cx_oracle抛出的异常错误问题

最近一直在用python写点监控oracle的程序,一直没有用到异常处理这一块,然后日常监控中一些错误笼统的抛出数据库连接异常,导致后续处理的时候无法及时定位问题。 于是早上抽点时间看了...

Python干货:分享Python绘制六种可视化图表

Python干货:分享Python绘制六种可视化图表

可视化图表,有相当多种,但常见的也就下面几种,其他比较复杂一点,大都也是基于如下几种进行组合,变换出来的。对于初学者来说,很容易被这官网上众多的图表类型给吓着了,由于种类太多,几种图表的...

pytorch 数据处理:定义自己的数据集合实例

数据处理 版本1 #数据处理 import os import torch from torch.utils import data from PIL import Image im...