python实现BackPropagation算法

yipeiwu_com6年前Python基础

实现神经网络的权重和偏置更新,很重要的一部就是使用BackPropagation(反向传播)算法。具体来说,反向传播算法就是用误差的反向传播来计算w(权重)和b(偏置)相对于目标函数的导数,这样就可以在原来的w,b的基础上减去偏导数来更新。其中我上次写的python实现梯度下降中有一个函数backprop(x,y)就是用来实现反向传播的算法。(注:代码并非自己总结,github上有这个代码的实现https://github.com/LCAIZJ/neural-networks-and-deep-learning

def backprop(self,x,y):
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  # 通过输入x,前向计算输出层的值
  activation = x
  activations = [x]# 存储的是所以的输出层
  zs = []
  for b,w in zip(self.biases,self.weights):
    z = np.dot(w,activation)+b
    zs.append(z)
    activation = sigmoid(z)
    activations.append(activation)
  # 计算输出层的error
  delta = self.cost_derivative(activations[-1],y)*sigmoid_prime(zs[:-1])
  nabla_b[-1] = delta
  nabla_w[-1] = np.dot(delta,activations[-2].transpose())
  #反向更新error
  for l in xrange(2,self.num_layers):
    z = zs[-l]
    sp = sigmoid_prime(z)
    delta = np.dot(self.weight[-l+1].transpose(),delta)*sp
    nabla_b[-l] = delta
    nabla_w[-l] = np.dot(delta,activations[-l-1].transpose())
  return (nabla_b,nabla_w)

其中,传入的x和y是一个单独的实例。

def cost_derivative(self,output_activation,y):
  return (output_activation-y)
def sigmoid(z):
  return 1.0/(1.0+np.exp(z))
def sigmoid_prime(z):
  return sigmoid(z)*(1-sigmoid(z))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Flask框架配置与调试操作示例

本文实例讲述了Flask框架配置与调试操作。分享给大家供大家参考,具体如下: 配置管理 复杂的项目需要配置各种环境。如果设置项很少,可以直接硬编码进来,比如下面的方式: app =...

Python定时发送天气预报邮件代码实例

这篇文章主要介绍了Python定时发送天气预报邮件代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 用python爬虫爬到的天气...

python+pygame简单画板实现代码实例

python+pygame简单画板实现代码实例

疑问:pygame已经过时了吗? 过没过时不知道,反正这玩意官方已经快四年没有更新了。用的人还是蛮多的(相对于其他同类项目),不过大家都是用来写写小东西玩一玩,没有人用这个做商业项目。p...

Python如何基于rsa模块实现非对称加密与解密

这篇文章主要介绍了Python如何基于rsa模块实现非对称加密与解密,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1、简单介绍: R...

Python进程间通信Queue消息队列用法分析

本文实例讲述了Python进程间通信Queue消息队列用法。分享给大家供大家参考,具体如下: 进程间通信-Queue Process之间有时需要通信,操作系统提供了很多机制来实现进程间的...