python实现BackPropagation算法

yipeiwu_com5年前Python基础

实现神经网络的权重和偏置更新,很重要的一部就是使用BackPropagation(反向传播)算法。具体来说,反向传播算法就是用误差的反向传播来计算w(权重)和b(偏置)相对于目标函数的导数,这样就可以在原来的w,b的基础上减去偏导数来更新。其中我上次写的python实现梯度下降中有一个函数backprop(x,y)就是用来实现反向传播的算法。(注:代码并非自己总结,github上有这个代码的实现https://github.com/LCAIZJ/neural-networks-and-deep-learning

def backprop(self,x,y):
  nabla_b = [np.zeros(b.shape) for b in self.biases]
  nabla_w = [np.zeros(w.shape) for w in self.weights]
  # 通过输入x,前向计算输出层的值
  activation = x
  activations = [x]# 存储的是所以的输出层
  zs = []
  for b,w in zip(self.biases,self.weights):
    z = np.dot(w,activation)+b
    zs.append(z)
    activation = sigmoid(z)
    activations.append(activation)
  # 计算输出层的error
  delta = self.cost_derivative(activations[-1],y)*sigmoid_prime(zs[:-1])
  nabla_b[-1] = delta
  nabla_w[-1] = np.dot(delta,activations[-2].transpose())
  #反向更新error
  for l in xrange(2,self.num_layers):
    z = zs[-l]
    sp = sigmoid_prime(z)
    delta = np.dot(self.weight[-l+1].transpose(),delta)*sp
    nabla_b[-l] = delta
    nabla_w[-l] = np.dot(delta,activations[-l-1].transpose())
  return (nabla_b,nabla_w)

其中,传入的x和y是一个单独的实例。

def cost_derivative(self,output_activation,y):
  return (output_activation-y)
def sigmoid(z):
  return 1.0/(1.0+np.exp(z))
def sigmoid_prime(z):
  return sigmoid(z)*(1-sigmoid(z))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python二叉树的定义及常用遍历算法分析

本文实例讲述了Python二叉树的定义及常用遍历算法。分享给大家供大家参考,具体如下: 说起二叉树的遍历,大学里讲的是递归算法,大多数人首先想到也是递归算法。但作为一个有理想有追求的程序...

Python中的anydbm模版和shelve模版使用指南

好久没写这系列的文章了,我越来越喜欢用python了,它在我的工作中占据的比例越来越大。废话少说,直接进入主题。  anydbm允许我们将一个磁盘上的文件与一个“dict-li...

基于Python的XSS测试工具XSStrike使用方法

基于Python的XSS测试工具XSStrike使用方法

简介 XSStrike 是一款用于探测并利用XSS漏洞的脚本 XSStrike目前所提供的产品特性: 对参数进行模糊测试之后构建合适的payload 使用payload对参数进行穷举匹配...

python-opencv获取二值图像轮廓及中心点坐标的代码

python-opencv获取二值图像轮廓及中心点坐标代码: groundtruth = cv2.imread(groundtruth_path)[:, :, 0] h1, w1 =...

Python升级导致yum、pip报错的解决方法

Python升级导致yum、pip报错的解决方法

前言 本文主要给大家介绍了因Python升级导致yum、pip报错的解放方法,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。 原因: yum是Python写的。服务器...