python机器学习之神经网络(三)

yipeiwu_com6年前Python基础

前面两篇文章都是参考书本神经网络的原理,一步步写的代码,这篇博文里主要学习了如何使用neurolab库中的函数来实现神经网络的算法。

首先介绍一下neurolab库的配置:

选择你所需要的版本进行下载,下载完成后解压。

neurolab需要采用python安装第三方软件包的方式进行安装,这里介绍一种安装方式:

(1)进入cmd窗口
(2)进入解压文件所在目录下
(3)输入 setup.py install

这样,在python安装目录的Python27\Lib\site-packages下,就可以看到neurolab的文件夹了,然后就可以使用neurolab库了。
使用neurolab库编写的代码如下:

import numpy as np 
import matplotlib.pyplot as plt 
import neurolab as nl 
input = np.array([[4,11],[7,340],[10,95],[3,29],[7,43],[5,128]]) 
target=np.array([[1],[0],[1],[0],[1],[0]]) 
#2层网络,5个输入节点,一个输出节点 
net=nl.net.newff([[3,10],[11,400]],[5,1]) 
err=net.train(input,target,epochs=500, show=1, goal=0.02) 
out=net.sim(input) 
mymean=np.mean(out) 
x_max=np.max(input[:,0])+5 
x_min=np.min(input[:,0])-5 
y_max=np.max(input[:,1])+5 
y_min=np.min(input[:,1])-5 
plt.subplot(211) 
#误差曲线 
plt.plot(range(len(err)),err) 
plt.xlabel('Epoch number') 
plt.ylabel('err (default SSE)') 
plt.subplot(212) 
#可视化图 
plt.xlim(x_min,x_max) 
plt.ylim(y_min,y_max) 
for i in xrange(0,len(input)): 
 if out[i]>mymean: 
  plt.plot(input[i,0],input[i,1],'ro') 
 else: 
  plt.plot(input[i,0],input[i,1],'r*') 
 
plt.show() 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch动态网络以及权重共享实例

pytorch 动态网络+权值共享 pytorch以动态图著称,下面以一个栗子来实现动态网络和权值共享技术: # -*- coding: utf-8 -*- import rando...

快速了解Python开发中的cookie及简单代码示例

快速了解Python开发中的cookie及简单代码示例

cookie :是用户保存在用户浏览器端的一对键值对,是为了解决http的无状态连接。服务端是可以把 cookie写到用户浏览器上,用户每次发请求会携带cookie。 存放位置: 每...

Python 进程之间共享数据(全局变量)的方法

进程之间共享数据(数值型): import multiprocessing def func(num): num.value=10.78 #子进程改变数值的值,主进程跟着改变...

python的pytest框架之命令行参数详解(下)

python的pytest框架之命令行参数详解(下)

前言 上篇说到命令行执行测试用例的部分参数如何使用?今天将继续更新其他一些命令选项的使用,和pytest收集测试用例的规则! pytest执行用例命令行参数 --collect-on...

numpy的文件存储.npy .npz 文件详解

Numpy能够读写磁盘上的文本数据或二进制数据。 将数组以二进制格式保存到磁盘 np.load和np.save是读写磁盘数组数据的两个主要函数,默认情况下,数组是以未压缩的原始二进制格式...