pytorch动态网络以及权重共享实例

yipeiwu_com6年前Python基础

pytorch 动态网络+权值共享

pytorch以动态图著称,下面以一个栗子来实现动态网络和权值共享技术:

# -*- coding: utf-8 -*-
import random
import torch


class DynamicNet(torch.nn.Module):
  def __init__(self, D_in, H, D_out):
    """
    这里构造了几个向前传播过程中用到的线性函数
    """
    super(DynamicNet, self).__init__()
    self.input_linear = torch.nn.Linear(D_in, H)
    self.middle_linear = torch.nn.Linear(H, H)
    self.output_linear = torch.nn.Linear(H, D_out)

  def forward(self, x):
    """
    For the forward pass of the model, we randomly choose either 0, 1, 2, or 3
    and reuse the middle_linear Module that many times to compute hidden layer
    representations.

    Since each forward pass builds a dynamic computation graph, we can use normal
    Python control-flow operators like loops or conditional statements when
    defining the forward pass of the model.

    Here we also see that it is perfectly safe to reuse the same Module many
    times when defining a computational graph. This is a big improvement from Lua
    Torch, where each Module could be used only once.
    这里中间层每次向前过程中都是随机添加0-3层,而且中间层都是使用的同一个线性层,这样计算时,权值也是用的同一个。
    """
    h_relu = self.input_linear(x).clamp(min=0)
    for _ in range(random.randint(0, 3)):
      h_relu = self.middle_linear(h_relu).clamp(min=0)
    y_pred = self.output_linear(h_relu)
    return y_pred


    # N is batch size; D_in is input dimension;
    # H is hidden dimension; D_out is output dimension.
    N, D_in, H, D_out = 64, 1000, 100, 10

    # Create random Tensors to hold inputs and outputs
    x = torch.randn(N, D_in)
    y = torch.randn(N, D_out)

    # Construct our model by instantiating the class defined above
    model = DynamicNet(D_in, H, D_out)

    # Construct our loss function and an Optimizer. Training this strange model with
    # vanilla stochastic gradient descent is tough, so we use momentum
    criterion = torch.nn.MSELoss(reduction='sum')
    optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
    for t in range(500):
      # Forward pass: Compute predicted y by passing x to the model
      y_pred = model(x)

      # Compute and print loss
      loss = criterion(y_pred, y)
      print(t, loss.item())

      # Zero gradients, perform a backward pass, and update the weights.
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()

这个程序实际上是一种RNN结构,在执行过程中动态的构建计算图

References: Pytorch Documentations.

以上这篇pytorch动态网络以及权重共享实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现获取前100组勾股数的方法示例

本文实例讲述了Python实现获取前100组勾股数的方法。分享给大家供大家参考,具体如下: 本来想采用穷举试探的方式来做这个算法,后来发现还是有点麻烦。从网络上找来了一种求解方法如下:...

解决pycharm 安装numpy失败的问题

解决pycharm 安装numpy失败的问题

pycharm安装numpy失败,问题是 解决办法: 配置系统变量 path 新加 然后在cmd 命令行里添加 之后pycharm里面就有了 numpy 以上这篇解决pychar...

python3中获取文件当前绝对路径的两种方法

方法1: import sys print(sys.argv) 得到文件当前绝对路径字符串的一个列表 ['D:/pycharm/PracticeProject/ClientSe...

Python教程之全局变量用法

本文实例讲述了Python全局变量用法。分享给大家供大家参考,具体如下: 全局变量不符合参数传递的精神,所以,平时我很少使用,除非定义常量。今天有同事问一个关于全局变量的问题,才发现其中...

详尽讲述用Python的Django框架测试驱动开发的教程

详尽讲述用Python的Django框架测试驱动开发的教程

测试驱动开发(TDD)是一个迭代的开发周期,强调编写实际代码之前编写自动化测试。 这个过程很简单:     先编写测试。   ...