pytorch动态网络以及权重共享实例

yipeiwu_com6年前Python基础

pytorch 动态网络+权值共享

pytorch以动态图著称,下面以一个栗子来实现动态网络和权值共享技术:

# -*- coding: utf-8 -*-
import random
import torch


class DynamicNet(torch.nn.Module):
  def __init__(self, D_in, H, D_out):
    """
    这里构造了几个向前传播过程中用到的线性函数
    """
    super(DynamicNet, self).__init__()
    self.input_linear = torch.nn.Linear(D_in, H)
    self.middle_linear = torch.nn.Linear(H, H)
    self.output_linear = torch.nn.Linear(H, D_out)

  def forward(self, x):
    """
    For the forward pass of the model, we randomly choose either 0, 1, 2, or 3
    and reuse the middle_linear Module that many times to compute hidden layer
    representations.

    Since each forward pass builds a dynamic computation graph, we can use normal
    Python control-flow operators like loops or conditional statements when
    defining the forward pass of the model.

    Here we also see that it is perfectly safe to reuse the same Module many
    times when defining a computational graph. This is a big improvement from Lua
    Torch, where each Module could be used only once.
    这里中间层每次向前过程中都是随机添加0-3层,而且中间层都是使用的同一个线性层,这样计算时,权值也是用的同一个。
    """
    h_relu = self.input_linear(x).clamp(min=0)
    for _ in range(random.randint(0, 3)):
      h_relu = self.middle_linear(h_relu).clamp(min=0)
    y_pred = self.output_linear(h_relu)
    return y_pred


    # N is batch size; D_in is input dimension;
    # H is hidden dimension; D_out is output dimension.
    N, D_in, H, D_out = 64, 1000, 100, 10

    # Create random Tensors to hold inputs and outputs
    x = torch.randn(N, D_in)
    y = torch.randn(N, D_out)

    # Construct our model by instantiating the class defined above
    model = DynamicNet(D_in, H, D_out)

    # Construct our loss function and an Optimizer. Training this strange model with
    # vanilla stochastic gradient descent is tough, so we use momentum
    criterion = torch.nn.MSELoss(reduction='sum')
    optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
    for t in range(500):
      # Forward pass: Compute predicted y by passing x to the model
      y_pred = model(x)

      # Compute and print loss
      loss = criterion(y_pred, y)
      print(t, loss.item())

      # Zero gradients, perform a backward pass, and update the weights.
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()

这个程序实际上是一种RNN结构,在执行过程中动态的构建计算图

References: Pytorch Documentations.

以上这篇pytorch动态网络以及权重共享实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python如何调用外部系统命令

Python如何调用外部系统命令

 前言 利用Python调用外部系统命令的方法可以提高编码效率。调用外部系统命令完成后可以通过获取命令执行返回结果码、执行的输出结果进行进一步的处理。本文主要描述Python常...

Python库urllib与urllib2主要区别分析

作为一个Python菜鸟,之前一直懵懂于urllib和urllib2,以为2是1的升级版。今天看到老外写的一篇《Python: difference between urllib and...

python3+PyQt5实现自定义流体混合窗口部件

python3+PyQt5实现自定义流体混合窗口部件

本文通过Python3+PyQt5实现自定义部件–流体混合窗口部件。通过逻辑(窗口)坐标绘制而成。调用setWindow,所有的绘制工作都会根据逻辑坐标系发生。 #!/usr/bin...

Python PyInstaller安装和使用教程详解

Pyinstaller这个库是我用pip下载的第一个模块。接下来通过本文给大家分享Python PyInstaller安装和使用教程,一起看看吧。 安装 PyInstalle Pytho...

Python3 模块、包调用&路径详解

如下所示: ''' 以下代码均为讲解,不能实际操作 ''' ''' 博客园 Infi_chu ''' ''' 模块的优点: 1.高可维护性 2.可以大大减少编写的代码量 模块一共有...