Python读csv文件去掉一列后再写入新的文件实例

yipeiwu_com5年前Python基础

用了两种方式解决该问题,都是网上现有的解决方案。

场景说明:

有一个数据文件,以文本方式保存,现在有三列user_id,plan_id,mobile_id。目标是得到新文件只有mobile_id,plan_id。

解决方案

方案一:用python的打开文件写文件的方式直接撸一遍数据,for循环内处理数据并写入到新文件。

代码如下:

def readwrite1( input_file,output_file):
 f = open(input_file, 'r')
 out = open(output_file,'w')
 print (f)
 for line in f.readlines():
 a = line.split(",")
 x=a[0] + "," + a[1]+"\n"
 out.writelines(x)
 f.close()
 out.close()

方案二:用 pandas 读数据到 DataFrame 再做数据分割,直接用 DataFrame 的写入功能写到新文件

代码如下:

def readwrite2(input_file,output_file): date_1=pd.read_csv(input_file,header=0,sep=',') date_1[['mobile', 'plan_id']].to_csv(output_file, sep=',', header=True,index=False) 

从代码上看,pandas逻辑更清晰。

下面看下执行的效率吧!

def getRunTimes( fun ,input_file,output_file):
 begin_time=int(round(time.time() * 1000))
 fun(input_file,output_file)
 end_time=int(round(time.time() * 1000))
 print("读写运行时间:",(end_time-begin_time),"ms")

getRunTimes(readwrite1,input_file,output_file) #直接撸数据
getRunTimes(readwrite2,input_file,output_file1) #使用dataframe读写数据

读写运行时间: 976 ms

读写运行时间: 777 ms

input_file 大概有27万的数据,dataframe的效率比for循环效率还是要快一点的,如果数据量更大些,效果是否更明显呢?

下面试下增加input_file记录的数量试试,有如下结果

input_file readwrite1 readwrite2
27W 976 777
55W 1989 1509
110W 4312 3158

从上面测试结果来看,dataframe的效率提高大约30%左右。

以上这篇Python读csv文件去掉一列后再写入新的文件实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现读取并保存文件的类

本文实例讲述了Python实现读取并保存文件的类。分享给大家供大家参考,具体如下: 这个类写在一个叫class_format.py 的文件里, 放在D盘 >>> i...

Django的用户模块与权限系统的示例代码

一 导言 设计一个好的用户系统往往不是那么容易,Django提供的用户系统可以快速实现基本的功能,并可以在此基础上继续扩展以满足我们的需求。 先看看Django的用户系统都提供哪些功能...

python实现websocket的客户端压力测试

使用python进行websocket的客户端压力测试,这个代码是从github上 找到。然后简单修改了下。大神运用了进程池,以及线程池的内容。所以保存下来,学习学习 然后需要说明的是:...

Python常用内置函数总结

一、数学相关 1、绝对值:abs(-1) 2、最大最小值:max([1,2,3])、min([1,2,3]) 3、序列长度:len('abc')、len([1,2,3])、len((1,...

Python 日志logging模块用法简单示例

Python 日志logging模块用法简单示例

本文实例讲述了Python 日志logging模块用法。分享给大家供大家参考,具体如下: demo.py(日志,输出到控制台): import logging # 导入loggin...