Python读csv文件去掉一列后再写入新的文件实例

yipeiwu_com6年前Python基础

用了两种方式解决该问题,都是网上现有的解决方案。

场景说明:

有一个数据文件,以文本方式保存,现在有三列user_id,plan_id,mobile_id。目标是得到新文件只有mobile_id,plan_id。

解决方案

方案一:用python的打开文件写文件的方式直接撸一遍数据,for循环内处理数据并写入到新文件。

代码如下:

def readwrite1( input_file,output_file):
 f = open(input_file, 'r')
 out = open(output_file,'w')
 print (f)
 for line in f.readlines():
 a = line.split(",")
 x=a[0] + "," + a[1]+"\n"
 out.writelines(x)
 f.close()
 out.close()

方案二:用 pandas 读数据到 DataFrame 再做数据分割,直接用 DataFrame 的写入功能写到新文件

代码如下:

def readwrite2(input_file,output_file): date_1=pd.read_csv(input_file,header=0,sep=',') date_1[['mobile', 'plan_id']].to_csv(output_file, sep=',', header=True,index=False) 

从代码上看,pandas逻辑更清晰。

下面看下执行的效率吧!

def getRunTimes( fun ,input_file,output_file):
 begin_time=int(round(time.time() * 1000))
 fun(input_file,output_file)
 end_time=int(round(time.time() * 1000))
 print("读写运行时间:",(end_time-begin_time),"ms")

getRunTimes(readwrite1,input_file,output_file) #直接撸数据
getRunTimes(readwrite2,input_file,output_file1) #使用dataframe读写数据

读写运行时间: 976 ms

读写运行时间: 777 ms

input_file 大概有27万的数据,dataframe的效率比for循环效率还是要快一点的,如果数据量更大些,效果是否更明显呢?

下面试下增加input_file记录的数量试试,有如下结果

input_file readwrite1 readwrite2
27W 976 777
55W 1989 1509
110W 4312 3158

从上面测试结果来看,dataframe的效率提高大约30%左右。

以上这篇Python读csv文件去掉一列后再写入新的文件实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现根据ip地址反向查找主机名称的方法

本文实例讲述了python实现根据ip地址反向查找主机名称的方法。分享给大家供大家参考。具体如下: import sys, socket try: result = socket...

简介二分查找算法与相关的Python实现示例

二分查找Binary Search的思想: 以有序表表示静态查找表时,查找函数可以用二分查找来实现。 二分查找(Binary Search)的查找过程是:先确定待查记录所在的区间,然后逐...

Python 获得命令行参数的方法(推荐)

本篇将介绍python中sys, getopt模块处理命令行参数 如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢? 需要模块:sy...

浅谈python3.x pool.map()方法的实质

我使用多进程的一般方式,都是multiprocessing模块中的Pool.map()方法。下面写一个简单的示例和解析。至于此种方法使用多进程的效率问题,还希望大佬予以指正。 示例:...

python写入文件自动换行问题的方法

python写入文件自动换行问题的方法

现在需要一个写文件方法,将selenium的脚本运行结果写入test_result.log文件中 首先创建写入方法 def write_result(str): writeres...