浅谈Pandas中map, applymap and apply的区别

yipeiwu_com6年前Python基础

1.apply()

当想让方程作用在一维的向量上时,可以使用apply来完成,如下所示

In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [117]: frame
Out[117]: 
        b     d     e
Utah  -0.029638 1.081563 1.280300
Ohio  0.647747 0.831136 -1.549481
Texas  0.513416 -0.884417 0.195343
Oregon -0.485454 -0.477388 -0.309548
In [118]: f = lambda x: x.max() - x.min()
In [119]: frame.apply(f)
Out[119]: 
b  1.133201
d  1.965980
e  2.829781
dtype: float64

但是因为大多数的列表统计方程 (比如 sum 和 mean)是DataFrame的函数,所以apply很多时候不是必须的

2.applymap()

如果想让方程作用于DataFrame中的每一个元素,可以使用applymap().用法如下所示

In [120]: format = lambda x: '%.2f' % x
In [121]: frame.applymap(format)
Out[121]: 
      b   d   e
Utah  -0.03  1.08  1.28
Ohio   0.65  0.83 -1.55
Texas  0.51 -0.88  0.20
Oregon -0.49 -0.48 -0.31

3.map()

map()只要是作用将函数作用于一个Series的每一个元素,用法如下所示

In [122]: frame['e'].map(format)
Out[122]: 
Utah    1.28
Ohio   -1.55
Texas   0.20
Oregon  -0.31
Name: e, dtype: object

总的来说就是apply()是一种让函数作用于列或者行操作,applymap()是一种让函数作用于DataFrame每一个元素的操作,而map是一种让函数作用于Series每一个元素的操作。

以上这篇浅谈Pandas中map, applymap and apply的区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中enumerate函数代码解析

enumerate函数用于遍历序列中的元素以及它们的下标。 enumerate函数说明: 函数原型:enumerate(sequence, [start=0]) 功能:将可循环序列...

python模块简介之有序字典(OrderedDict)

有序字典-OrderedDict简介 示例 有序字典和通常字典类似,只是它可以记录元素插入其中的顺序,而一般字典是会以任意的顺序迭代的。参见下面的例子: import collect...

python发送多人邮件没有展示收件人问题的解决方法

背景: 工作过程中需要对现有的机器、服务做监控,当服务出现问题后,邮件通知对应的人 问题: 使用python 2.7自带的email库来进行邮件的发送,但是发送后没有展示收件人列表内容...

Python File readlines() 使用方法

Python File readlines() 使用方法

概述 readlines() 方法用于读取所有行(直到结束符 EOF)并返回列表,该列表可以由 Python 的 for... in ... 结构进行处理。 如果碰到结束符 EOF 则返...

Windows 64位下python3安装nltk模块

Windows 64位下python3安装nltk模块

在网上找了各种安装教程,都没有在python3下安装nltk,于是我自己尝试着安装,算是成功了 1、首先,假设你的python3已经安装好,并且安装了numpy,matplotlib,p...