基于pandas数据样本行列选取的方法

yipeiwu_com5年前Python基础

注:以下代码是基于python3.5.0编写的

import pandas
food_info = pandas.read_csv("food_info.csv")
# ------------------选取数据样本的第一行--------------------
print(food_info.loc[0])
#------------------选取数据样本的3到6行----------------------
print(food_info.loc[3:6])
#------------------head选取数据样本的前几行------------------
print(food_info.head(2))
# ------------------选取数据样本的2,5,10行,两种方法-----------
# print(food_info.loc[[2,5,10]])     #方法一 
two_five_ten = [2,5,10]         #方法二
print(food_info.loc[two_five_ten])
# ------------------选取数据样本的NDB_No列--------------------
# ndb_col = food_info["NDB_No"]     #方法一 
col_name = "NDB_No"           #方法二
ndb_col = food_info[col_name]
print(ndb_col)
# ------------------选取数据样本的多列-------------------
# zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]]
columns = ["Zinc_(mg)", "Copper_(mg)"]
zinc_copper = food_info[columns]
print(zinc_copper)
# ---------------------综合小例子----------------------------
col_names = food_info.columns.tolist()   #把所有的行转化成list
print(col_names)
gram_columns = []
for c in col_names:            #遍历col_names,找出所有以(g)结尾的位置
  if c.endswith("(g)"):
    gram_columns.append(c)
print(gram_columns)
gram_df = food_info[gram_columns]     #把所有以(g)结尾的列存放到gram_df
print(gram_df.head(3)) 

以上这篇基于pandas数据样本行列选取的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Flask的图形化管理界面搭建框架Flask-Admin的使用教程

Flask-Admin是Flask框架的一个扩展,用它能够快速创建Web管理界面,它实现了比如用户、文件的增删改查等常用的管理功能;如果对它的默认界面不喜欢,可以通过修改模板文件来定制;...

python类中super() 的使用解析

描述 super() 函数是用于调用父类(超类)的一个方法。 super 是用来解决多重继承问题的,直接用类名调用父类方法在使用单继承的时候没问题,但是如果使用多继承,会涉及到查找顺序...

python求最大值最小值方法总结

python求最大值最小值方法总结

方法一(常规): 代码: count = int(input('输入数据个数:\n')) a = 1 while a <= count: num = int(input(...

Django渲染Markdown文章目录的方法示例

Django渲染Markdown文章目录的方法示例

对会读书的人来说,读一本书要做的第一件事,就是仔细阅读这本书的目录。阅读目录可以对整体内容有所了解,并清楚地知道感兴趣的部分在哪里,提高阅读质量。 博文也是同样的,好的目录对博主和读者都...

pyspark操作MongoDB的方法步骤

pyspark操作MongoDB的方法步骤

如何导入数据 数据可能有各种格式,虽然常见的是HDFS,但是因为在Python爬虫中数据库用的比较多的是MongoDB,所以这里会重点说说如何用spark导入MongoDB中的数据。...