Python装饰器原理与简单用法实例分析

yipeiwu_com6年前Python基础

本文实例讲述了Python装饰器原理与简单用法。分享给大家供大家参考,具体如下:

今天整理装饰器,内嵌的装饰器、让装饰器带参数等多种形式,非常复杂,让人头疼不已。但是突然间发现了装饰器的奥秘,原来如此简单。。。。

第一步 :从最简单的例子开始

# -*- coding:gbk -*-
'''示例1: 使用语法糖@来装饰函数,相当于"myfunc = deco(myfunc)"
但发现新函数只在第一次被调用,且原函数多调用了一次'''
def deco(func):
  print("before myfunc() called.")
  func()
  print(" after myfunc() called.")
  return func
@deco
def myfunc():
  print(" myfunc() called.")
myfunc()
myfunc()

这是一个最简单的装饰器的例子,但是这里有一个问题,就是当我们两次调用myfunc()的时候,发现装饰器函数只被调用了一次。为什么会这样呢?要解释这个就要给出破解装饰器的关键钥匙了。

这里@deco这一句,和myfunc = deco(myfunc)其实是完全等价的,只不过是换了一种写法而已

一定要记住上面这句!!!!

好了,从现在开始,只需要做替换操作就可以了。

将@deco 替换为 myfunc = deco(myfunc)

程序首先调用deco(myfunc),得到的返回结果赋值给了myfunc (注意:在Python中函数名只是个指向函数首地址的函数指针而已)

deco(myfunc)的返回值就是函数myfunc()的地址

这样其实myfunc 没有变化,也就是说,最后的两次myfunc()函数调用,其实都没有执行到deco()

有同学就问了,明明打印了deco()函数里面的内容啊,怎么说没有调用到呢。这位同学一看就是没有注意听讲,那一次打印是在@deco 这一句被执行的。大家亲自动手试一下就会发现" myfunc() called." 这句打印输出了三次。多的那次就是@deco这里输出的,因为@deco 等价于myfunc = deco(myfunc),这里已经调用了deco()函数了。

第二步 :确保装饰器被调用

怎么解决装饰器没有被调用的问题呢

# -*- coding:gbk -*-
'''示例2: 使用内嵌包装函数来确保每次新函数都被调用,
内嵌包装函数的形参和返回值与原函数相同,装饰函数返回内嵌包装函数对象'''
def deco(func):
  def _deco():
    print("before myfunc() called.")
    func()
    print(" after myfunc() called.")
    # 不需要返回func,实际上应返回原函数的返回值
  return _deco
@deco
def myfunc():
  print(" myfunc() called.")
  return 'ok'
myfunc()
myfunc()

这里其实不需要我解释了,还是按照第一步中的方法做替换就可以了。还是啰嗦几句吧。。

@deco 替换为 myfunc = deco(myfunc)

程序首先调用deco(myfunc),得到的返回结果赋值给了myfunc ,这样myfunc 就变成了指向函数_deco()的指针

以后的myfunc(),其实是调用_deco()

第三步 :对带参数的函数进行装饰

破案过程和第一步、第二步完全一致,不再重复了

# -*- coding:gbk -*-
'''示例5: 对带参数的函数进行装饰,
内嵌包装函数的形参和返回值与原函数相同,装饰函数返回内嵌包装函数对象'''
def deco(func):
  def _deco(a, b):
    print("before myfunc() called.")
    ret = func(a, b)
    print(" after myfunc() called. result: %s" % ret)
    return ret
  return _deco
@deco
def myfunc(a, b):
  print(" myfunc(%s,%s) called." % (a, b))
  return a + b
myfunc(1, 2)
myfunc(3, 4)

第四步 :让装饰器带参数

# -*- coding:gbk -*-
'''示例7: 在示例4的基础上,让装饰器带参数,
和上一示例相比在外层多了一层包装。
装饰函数名实际上应更有意义些'''
def deco(arg):
  def _deco(func):
    def __deco():
      print("before %s called [%s]." % (func.__name__, arg))
      func()
      print(" after %s called [%s]." % (func.__name__, arg))
    return __deco
  return _deco
@deco("mymodule")
def myfunc():
  print(" myfunc() called.")
@deco("module2")
def myfunc2():
  print(" myfunc2() called.")
myfunc()
myfunc2()

这种带参数的装饰器怎么解释呢。其实是一样的,还是我们的替换操作

@deco("mymodule")替换为myfunc = deco("mymodule")(myfunc )

注意啊,这里deco后面跟了两个括号。

有同学要问了,这是什么意思?

其实很简单,先执行deco("mymodule"),返回结果为_deco

再执行_deco(myfunc),得到的返回结果为__deco

所以myfunc = __deco

破案!

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

python编写朴素贝叶斯用于文本分类

python编写朴素贝叶斯用于文本分类

朴素贝叶斯估计 朴素贝叶斯是基于贝叶斯定理与特征条件独立分布假设的分类方法。首先根据特征条件独立的假设学习输入/输出的联合概率分布,然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验...

python的即时标记项目练习笔记

python的即时标记项目练习笔记

这是《python基础教程》后面的实践,照着写写,一方面是来熟悉python的代码方式,另一方面是练习使用python中的基本的以及非基本的语法,做到熟能生巧。 这个项目一开始比较简单,...

浅谈pandas中shift和diff函数关系

通过?pandas.DataFrame.shift命令查看帮助文档 Signature: pandas.DataFrame.shift(self, periods=1, fr...

PyTorch实现更新部分网络,其他不更新

torch.Tensor.detach()的使用 detach()的官方说明如下: Returns a new Tensor, detached from the current gra...

Python 修改列表中的元素方法

Python 修改列表中的元素方法

如下所示: #打印列表文件 def show_magicians(magics) : for magic in magics : print(magic) #修改列表文件...