Python多线程编程(六):可重入锁RLock

yipeiwu_com5年前Python基础

考虑这种情况:如果一个线程遇到锁嵌套的情况该怎么办,这个嵌套是指当我一个线程在获取临界资源时,又需要再次获取。

根据这种情况,代码如下:

复制代码 代码如下:

'''
Created on 2012-9-8
 
@author: walfred
@module: thread.ThreadTest6
''' 
 
import threading 
import time 
 
counter = 0 
mutex = threading.Lock() 
 
class MyThread(threading.Thread): 
    def __init__(self): 
        threading.Thread.__init__(self) 
 
    def run(self): 
        global counter, mutex 
        time.sleep(1); 
        if mutex.acquire(): 
            counter += 1 
            print "I am %s, set counter:%s" % (self.name, counter) 
            if mutex.acquire(): 
                counter += 1 
                print "I am %s, set counter:%s" % (self.name, counter) 
                mutex.release() 
            mutex.release() 
 
if __name__ == "__main__": 
    for i in range(0, 200): 
        my_thread = MyThread() 
        my_thread.start()

这种情况的代码运行情况如下:

复制代码 代码如下:

I am Thread-1, set counter:1

之后就直接挂起了,这种情况形成了最简单的死锁。

那有没有一种情况可以在某一个线程使用互斥锁访问某一个竞争资源时,可以再次获取呢?在Python中为了支持在同一线程中多次请求同一资源,python提供了“可重入锁”:threading.RLock。这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:

代码只需将上述的:

复制代码 代码如下:

mutex = threading.Lock()

替换成:
复制代码 代码如下:

mutex = threading.RLock()

即可。

相关文章

Python多进程池 multiprocessing Pool用法示例

本文实例讲述了Python多进程池 multiprocessing Pool用法。分享给大家供大家参考,具体如下: 1. 背景 由于需要写python程序, 定时、大量发送htttp请求...

Python利用multiprocessing实现最简单的分布式作业调度系统实例

介绍 Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个机器的多个...

详解Python利用random生成一个列表内的随机数

首先,需要导入random模块: import random 随机取1-33之间的1个随机数,可能重复: random.choice(range(1,34)) print得到...

理解python中生成器用法

生成器(generator)概念 生成器不会把结果保存在一个系列中,而是保存生成器的状态,在每次进行迭代时返回一个值,直到遇到StopIteration异常结束。 生成器语法 生成器表达...

python开发之tkinter实现图形随鼠标移动的方法

python开发之tkinter实现图形随鼠标移动的方法

本文实例讲述了python开发之tkinter实现图形随鼠标移动的方法。分享给大家供大家参考,具体如下: 做这个东西的时候,灵感源自于一个js效果: 两个眼睛随鼠标移动而移动 运行效果:...