对Python中gensim库word2vec的使用详解

yipeiwu_com6年前Python基础

pip install gensim安装好库后,即可导入使用:

1、训练模型定义

from gensim.models import Word2Vec 
model = Word2Vec(sentences, sg=1, size=100, window=5, min_count=5, negative=3, sample=0.001, hs=1, workers=4) 

参数解释:

1.sg=1是skip-gram算法,对低频词敏感;默认sg=0为CBOW算法。

2.size是输出词向量的维数,值太小会导致词映射因为冲突而影响结果,值太大则会耗内存并使算法计算变慢,一般值取为100到200之间。

3.window是句子中当前词与目标词之间的最大距离,3表示在目标词前看3-b个词,后面看b个词(b在0-3之间随机)。

4.min_count是对词进行过滤,频率小于min-count的单词则会被忽视,默认值为5。

5.negative和sample可根据训练结果进行微调,sample表示更高频率的词被随机下采样到所设置的阈值,默认值为1e-3。

6.hs=1表示层级softmax将会被使用,默认hs=0且negative不为0,则负采样将会被选择使用。

7.workers控制训练的并行,此参数只有在安装了Cpython后才有效,否则只能使用单核。

详细参数说明可查看word2vec源代码。

2、训练后的模型保存与加载

model.save(fname) 
model = Word2Vec.load(fname) 

3、模型使用(词语相似度计算等)

model.most_similar(positive=['woman', 'king'], negative=['man']) 
#输出[('queen', 0.50882536), ...] 
 
model.doesnt_match("breakfast cereal dinner lunch".split()) 
#输出'cereal' 
 
model.similarity('woman', 'man') 
#输出0.73723527 
 
model['computer'] # raw numpy vector of a word 
#输出array([-0.00449447, -0.00310097, 0.02421786, ...], dtype=float32) 

其它内容不再赘述,详细请参考gensim的word2vec的官方说明,里面讲的很详细。

以上这篇对Python中gensim库word2vec的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用TensorFlow实现SVM

使用TensorFlow实现SVM

较基础的SVM,后续会加上多分类以及高斯核,供大家参考。 Talk is cheap, show me the code import tensorflow as tf from s...

浅谈pytorch和Numpy的区别以及相互转换方法

如下所示: # -*- coding: utf-8 -*- # @Time : 2018/1/17 16:37 # @Author : Zhiwei Zhong # @Site...

python实现抽奖小程序

本文实例为大家分享了python实现抽奖小程序的具体代码,供大家参考,具体内容如下 设计一个抽奖服务  背景:有x个奖品,要求在y天内发完;每天至少发放z个奖品;每天抽奖人数...

python如何使用Redis构建分布式锁

这篇文章主要介绍了python如何使用Redis构建分布式锁,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在实际应用场景中,我们可能...

Python设计实现的计算器功能完整实例

Python设计实现的计算器功能完整实例

本文实例讲述了Python设计实现的计算器功能。分享给大家供大家参考,具体如下: 通过利用PYTHON 设计处理计算器的功能如: 1 - 2 * ( (60-30 +(-40/5) *...