Python基于pyCUDA实现GPU加速并行计算功能入门教程

yipeiwu_com6年前Python基础

本文实例讲述了Python基于pyCUDA实现GPU加速并行计算功能。分享给大家供大家参考,具体如下:

Nvidia的CUDA 架构为我们提供了一种便捷的方式来直接操纵GPU 并进行编程,但是基于 C语言的CUDA实现较为复杂,开发周期较长。而python 作为一门广泛使用的语言,具有 简单易学、语法简单、开发迅速等优点。作为第四种CUDA支持语言,相信python一定会 在高性能计算上有杰出的贡献–pyCUDA。

pyCUDA特点

  • CUDA完全的python实现
  • 编码更为灵活、迅速、自适应调节代码
  • 更好的鲁棒性,自动管理目标生命周期和错误检测
  • 包含易用的工具包,包括基于GPU的线性代数库、reduction和scan,添加了快速傅里叶变换包和线性代数包LAPACK
  • 完整的帮助文档Wiki

pyCUDA的工作流程

具体的调用流程如下:

调用基本例子

import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule
mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
 const int i = threadIdx.x;
 dest[i] = a[i] * b[i];
}
""")
multiply_them = mod.get_function("multiply_them")
a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros_like(a)
multiply_them(
  drv.Out(dest), drv.In(a), drv.In(b),
  block=(400,1,1), grid=(1,1))
print dest-a*b
#tips: copy from hello_gpu.py in the package.

具体内容

  • 设备交互
  • Profiler Control
  • 动态编译
  • OpenGL交互
  • GPU数组
  • 超编程技术

补充内容:

对于GPU 加速python还有功能包,例如处理图像的pythonGPU加速包—— pyGPU
以及专门的GPU 加速python机器学习包—— scikitCUDA
Matlab对应的工具包并行计算工具箱GPU计算技术
以及教程介绍文档

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

python 普通克里金(Kriging)法的实现

python 普通克里金(Kriging)法的实现

克里金法时一种用于空间插值的地学统计方法。 克里金法用半变异测定空间要素,要素即自相关要素。 半变异公式为: 其中γ(h) 是已知点 xi 和 xj 的半变异,***h***表示...

python实现学员管理系统

python实现学员管理系统这个小程序是我刚刚接触python时,导师带着做的第一个小项目。通过这次练习,我学会了很多东西。下面是具体的代码和要求 ''' 学员管理系统1.0版本 1.添...

python查看文件大小和文件夹内容的方法

一旦有办法处理文件路径,就可以开始搜集特定文件和文件夹的信息。os.path 模块提供了一些函数,用于查看文件的字节数以及给定文件夹中的文件和子文件夹。 • 调用 os.pa...

Python批量转换文件编码格式

自己写的方法,适用于linux, #!/usr/bin/python #coding=utf-8 import sys import os, os.path import dirca...

python程序控制NAO机器人行走

最近重新学习nao的官方文档,写点简单的程序回顾一下。主要是用python调用api,写下来保存着。 '''Walk:small example to make nao walk''...