python 普通克里金(Kriging)法的实现

yipeiwu_com5年前Python基础

克里金法时一种用于空间插值的地学统计方法。

克里金法用半变异测定空间要素,要素即自相关要素。

半变异公式为:

在这里插入图片描述

其中γ(h) 是已知点 xixj 的半变异,***h***表示这两个点之间的距离,z是属性值。

假设不存在漂移,普通克里金法重点考虑空间相关因素,并用拟合的半变异直接进行插值。

估算某测量点z值的通用方程为:

在这里插入图片描述

式中,z0是待估计值,zx是已知点x的值,Wx是每个已知点关联的权重,s是用于估计的已知点数目。
权重可以由一组矩阵方程得到。

在这里插入图片描述

在这里插入图片描述

此程序对半变异进行拟合时采用的时最简单的正比例函数拟合

数据为csv格式

保存格式如下:

第一行为第一个点以此类推

最后一行是待求点坐标,其中z为未知值,暂且假设为0

在这里插入图片描述

代码如下:

import numpy as np
from math import*
from numpy.linalg import *
h_data=np.loadtxt(open('高程点数据.csv'),delimiter=",",skiprows=0)
print('原始数据如下(x,y,z):\n未知点高程初值设为0\n',h_data)
def dis(p1,p2):
 a=pow((pow((p1[0]-p2[0]),2)+pow((p1[1]-p2[1]),2)),0.5)
 return a
def rh(z1,z2):
 r=1/2*pow((z1[2]-z2[2]),2)
 return r
def proportional(x,y):
 xx,xy=0,0
 for i in range(len(x)):
  xx+=pow(x[i],2)
  xy+=x[i]*y[i]
 k=xy/xx
 return k
r=[];pp=[];p=[];
for i in range(len(h_data)):
 pp.append(h_data[i])
for i in range(len(pp)):
 for j in range(len(pp)):
  p.append(dis(pp[i],pp[j]))
  r.append(rh(pp[i],pp[j]))
r=np.array(r).reshape(len(h_data),len(h_data))
r=np.delete(r,len(h_data)-1,axis =0)
r=np.delete(r,len(h_data)-1,axis =1)

h=np.array(p).reshape(len(h_data),len(h_data))
h=np.delete(h,len(h_data)-1,axis =0)
oh=h[:,len(h_data)-1]
h=np.delete(h,len(h_data)-1,axis =1)

hh=np.triu(h,0)
rr=np.triu(r,0)
r0=[];h0=[];
for i in range(len(h_data)-1):
 for j in range(len(h_data)-1):
  if hh[i][j] !=0:
   a=h[i][j]
   h0.append(a)
  if rr[i][j] !=0:
   a=rr[i][j]
   r0.append(a)
k=proportional(h0,r0)
hnew=h*k
a2=np.ones((1,len(h_data)-1))
a1=np.ones((len(h_data)-1,1))
a1=np.r_[a1,[[0]]]
hnew=np.r_[hnew,a2]
hnew=np.c_[hnew,a1]
print('半方差联立矩阵:\n',hnew)
oh=np.array(k*oh)
oh=np.r_[oh,[1]]
w=np.dot(inv(hnew),oh)
print('权阵运算结果:\n',w)
z0,s2=0,0
for i in range(len(h_data)-1):
 z0=w[i]*h_data[i][2]+z0
 s2=w[i]*oh[i]+s2
s2=s2+w[len(h_data)-1]
print('未知点高程值为:\n',z0)
print('半变异值为:\n',pow(s2,0.5))
input()

运算结果

在这里插入图片描述

python初学,为了完成作业写了个小程序来帮助计算,因为初学知识有限,有很多地方写的很复杂,可以优化的地方很多。 还望读者谅解,欢迎斧正谢谢!

参考文献:
【1】(美)张康聪 著;陈健飞等译. 地理信息系统导论(第三版). 北京:清华大学出版社, 2009.04.

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django-rest-framework解析请求参数过程详解

django-rest-framework解析请求参数过程详解

前言 我们在django-rest-framework 自定义swagger 文章中编写了接口, 调通了接口文档. 接口文档可以直接填写参数进行请求, 接下来的问题是如何接受参数, 由...

pycharm运行scrapy过程图解

pycharm运行scrapy过程图解

这篇文章主要介绍了pycharm运行scrapy过程图解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.打开pycharm, 点击...

Python中用format函数格式化字符串的用法

自python2.6开始,新增了一种格式化字符串的函数str.format(),可谓威力十足。那么,他跟之前的%型格式化字符串相比,有什么优越的存在呢?让我们来揭开它羞答答的面纱。 语法...

python matlibplot绘制多条曲线图

python matlibplot绘制多条曲线图

这里我利用的是matplotlib.pyplot.plot的工具来绘制折线图,这里先给出一个段代码和结果图: # -*- coding: UTF-8 -*- import numpy...

Python 迭代,for...in遍历,迭代原理与应用示例

本文实例讲述了Python 迭代,for...in遍历,迭代原理与应用。分享给大家供大家参考,具体如下: 迭代是访问集合元素的一种方式。什么时候访问元素,什么时候再迭代,比一次性取出集合...