对python3 一组数值的归一化处理方法详解

yipeiwu_com6年前Python基础

1、什么是归一化:

归一化就是把一组数(大于1)化为以1为最大值,0为最小值,其余数据按百分比计算的方法。如:1,2,3.,那归一化后就是:0,0.5,1

2、归一化步骤:

如:2,4,6

(1)找出一组数里的最小值和最大值,然后就算最大值和最小值的差值

min = 2; max = 6; r = max - min = 4

(2)数组中每个数都减去最小值

2,4,6 变成 0,2,4

(3)再除去差值r

0,2,4 变成 0,0.5,1

就得出归一化后的数组了

3、用python 把一个矩阵中每列的数字归一化

import numpy as np
 
def autoNorm(data):   #传入一个矩阵
 mins = data.min(0)  #返回data矩阵中每一列中最小的元素,返回一个列表
 maxs = data.max(0)  #返回data矩阵中每一列中最大的元素,返回一个列表
 ranges = maxs - mins #最大值列表 - 最小值列表 = 差值列表
 normData = np.zeros(np.shape(data))  #生成一个与 data矩阵同规格的normData全0矩阵,用于装归一化后的数据
 row = data.shape[0]      #返回 data矩阵的行数
 normData = data - np.tile(mins,(row,1)) #data矩阵每一列数据都减去每一列的最小值
 normData = normData / np.tile(ranges,(row,1)) #data矩阵每一列数据都除去每一列的差值(差值 = 某列的最大值- 某列最小值)
 return normData
 
arr = np.array([[8,7,8],[4,3,1],[6,9,8]])
print(autoNorm(arr))
 
打印结果:
[[ 1.   0.66666667 1.  ]
 [ 0.   0.   0.  ]
 [ 0.5   1.   1.  ]]

以上这篇对python3 一组数值的归一化处理方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python RabbitMQ消息队列实现rpc

Python RabbitMQ消息队列实现rpc

上个项目中用到了ActiveMQ,只是简单应用,安装完成后直接是用就可以了。由于新项目中一些硬件的限制,需要把消息队列换成RabbitMQ。 RabbitMQ中的几种模式和机制比Acti...

django drf框架中的user验证以及JWT拓展的介绍

登录注册是几乎所有网站都需要去做的接口,而说到登录,自然也就涉及到验证以及用户登录状态保存,最近用DRF在做的一个关于网上商城的项目中,引入了一个拓展DRF JWT,专门用于做验证和用户...

Python绘制股票移动均线的实例

Python绘制股票移动均线的实例

1. 前沿 移动均线是股票最进本的指标,本文采用numpy.convolve计算股票的移动均线 2. numpy.convolve numpy.convolve(a, v, mode='...

详解python调用cmd命令三种方法

目前我使用到的python中执行cmd的方式有三种 使用os.system("cmd")     该方法在调用完shell脚本后,返回一个16位的二进制数...

使用Python的Treq on Twisted来进行HTTP压力测试

从事API相关的工作很有挑战性,在高峰期保持系统的稳定及健壮性就是其中之一,这也是我们在Mailgun做很多压力测试的原因。 这么久以来,我们已经尝试了很多种方法,从简单的ApacheB...