Tensorflow实现神经网络拟合线性回归

yipeiwu_com6年前Python基础

本文实例为大家分享了Tensorflow实现神经网络拟合线性回归的具体代码,供大家参考,具体内容如下

一、利用简单的一层神经网络拟合一个函数 y = x^2 ,其中加入部分噪声作为偏置值防止拟合曲线过拟合

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
# 生成-0.5到0.5间均匀发布的200个点,将数据变为二维,200行一列的数据
x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
 
# 生成一些噪音数据
noise = np.random.normal(0, 0.02, x_data.shape)
 
# 定义y与x的关系
y_data = np.square(x_data) + noise
 
# 定义两个占位符
x = tf.placeholder(tf.float32, [None, 1]) # 形状为n行1列,同x_data的shape
y = tf.placeholder(tf.float32, [None, 1])
 
# 定义神经网络
 
# 定义中间层,因为每个x是一维,所以只需1个神经元,定义中间层的连接神经元是10
# 矩阵:[a, b]×[b, c] = [a, c] 
L1_weights = tf.Variable(tf.random_normal([1, 10])) 
L1_bias = tf.Variable(tf.zeros([1, 10]))
L1_weights_bias = tf.matmul(x, L1_weights) + L1_bias
L1 = tf.nn.tanh(L1_weights_bias)
 
# 定义输出层,每个x只有一个神经元
L2_weights = tf.Variable(tf.random_normal([10, 1]))
L2_bias = tf.Variable(tf.zeros([1, 1]))
L2_weights_bias = tf.matmul(L1, L2_weights) + L2_bias
L2 = tf.nn.tanh(L2_weights_bias)
 
# 定义损失函数
loss = tf.reduce_mean(tf.square(y - L2))
 
# 梯度下降最小化损失函数
optimizer = tf.train.GradientDescentOptimizer(0.1)
 
train_step = optimizer.minimize(loss)
 
# 全局变量初始化
init = tf.global_variables_initializer()
 
# 定义会话
with tf.Session() as sess:
 sess.run(init)
 for _ in range(2000):
  sess.run(train_step, feed_dict={x:x_data, y:y_data})
  
 # 获取预测值
 predict = sess.run(L2, feed_dict={x:x_data})
 
 # 画图
 plt.figure()
 # 画出散点
 plt.scatter(x_data, y_data)
 # 画出拟合的曲线
 plt.plot(x_data, predict)
 
 plt.show()

二、代码运行效果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django框架ORM数据库操作实例详解

Django框架ORM数据库操作实例详解

本文实例讲述了Django框架ORM数据库操作。分享给大家供大家参考,具体如下: 测试数据:BookInfo表 PeopleInfo表 一.增加 1.save: 对象 = 模型类...

python实现在每个独立进程中运行一个函数的方法

本文实例讲述了python实现在每个独立进程中运行一个函数的方法。分享给大家供大家参考。具体分析如下: 这个简单的函数可以同于在单独的进程中运行另外一个函数,这对于释放内存资源非常有用...

简析Python的闭包和装饰器

简析Python的闭包和装饰器

什么是装饰器? 装饰器(Decorator)相对简单,咱们先介绍它:“装饰器的功能是将被装饰的函数当作参数传递给与装饰器对应的函数(名称相同的函数),并返回包装后的被装饰的函数”,听起来...

详细解析Python中__init__()方法的高级应用

通过工厂函数对 __init__() 加以利用 我们可以通过工厂函数来构建一副完整的扑克牌。这会比枚举所有52张扑克牌要好得多,在Python中,我们有如下两种常见的工厂方法: &...

举例讲解Linux系统下Python调用系统Shell的方法

时候难免需要直接调用Shell命令来完成一些比较简单的操作,比如mount一个文件系统之类的。那么我们使用Python如何调用Linux的Shell命令?下面来介绍几种常用的方法: 1....