PyCharm搭建Spark开发环境实现第一个pyspark程序

yipeiwu_com5年前Python基础

一, PyCharm搭建Spark开发环境

Windows7, Java1.8.0_74, Scala 2.12.6, Spark 2.2.1, Hadoop2.7.6

通常情况下,Spark开发是基于Linux集群的,但这里作为初学者并且囊中羞涩,还是在windows环境下先学习吧。

参照这个配置本地的Spark环境。

之后就是配置PyCharm用来开发Spark。本人在这里浪费了不少时间,因为百度出来的无非就以下两种方式:

1.在程序中设置环境变量

import os
import sys

os.environ['SPARK_HOME'] = 'C:\xxx\spark-2.2.1-bin-hadoop2.7'
sys.path.append('C:\xxx\spark-2.2.1-bin-hadoop2.7\python')

2.在Edit Configuration中添加环境变量

不过还是没有解决程序中代码自动补全。

想了半天,观察到spark提供的pyspark很像单独的安装包,应该可以考虑将pyspark包放到python的安装目录下,这样也就自动添加到之前所设置的pythonpath里了,应该就能实现pyspark的代码补全提示。

将spark下的pyspark包放到python路径下(注意,不是spark下的python!)

最后,实现了pyspark代码补全功能。

二.第一个pyspark程序

作为小白,只能先简单用下python+pyspark了。

数据:Air Quality in Madrid (2001-2018)

需求:根据历史数据统计出每个月平均指标值

import os
import re
from pyspark.sql import SparkSession

if __name__ == "__main__":

 spark = SparkSession.builder.getOrCreate()
 df_array = []
 years = []
 air_quality_data_folder = "C:/xxx/spark/air-quality-madrid/csvs_per_year"
 for file in os.listdir(air_quality_data_folder):
  if '2018' not in file:
   year = re.findall("\d{4}", file)
   years.append(year[0])
   file_path = os.path.join(air_quality_data_folder, file)
   df = spark.read.csv(file_path, header="true")
   # print(df.columns)
   df1 = df.withColumn('yyyymm', df['date'].substr(0, 7))
   df_final = df1.filter(df1['yyyymm'].substr(0, 4) == year[0]).groupBy(df1['yyyymm']).agg({'PM10': 'avg'})
   df_array.append(df_final)

 pm10_months = [0] * 12
 # print(range(12))
 for df in df_array:
  for i in range(12):
   rows = df.filter(df['yyyymm'].contains('-'+str(i+1).zfill(2))).first()
   # print(rows[1])
   pm10_months[i] += (rows[1]/12)

 years.sort()
 print(years[0] + ' - ' + years[len(years)-1] + '年,每月平均PM10统计')
 m_index = 1
 for data in pm10_months:
  print(str(m_index).zfill(2) + '月份: ' + '||' * round(data))
  m_index += 1

运行结果:

- 2017年,每月平均PM10统计
01月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
02月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
03月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
04月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
05月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
06月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
07月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
08月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
09月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

由以上统计结果,可以看出4月份的PM10最低。

Done!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

10招!看骨灰级Pythoner玩转Python的方法

10招!看骨灰级Pythoner玩转Python的方法

pandas是基于numpy构建的,使数据分析工作变得更快更简单的高级数据结构和操作工具。本文为大家带来10个玩转Python的小技巧,学会了分分钟通关变大神! 1. read_cs...

Numpy 中的矩阵求逆实例

1. 矩阵求逆 import numpy as np a = np.array([[1, 2], [3, 4]]) # 初始化一个非奇异矩阵(数组) print(np.linalg...

python实现的发邮件功能示例

python实现的发邮件功能示例

本文实例讲述了python实现的发邮件功能。分享给大家供大家参考,具体如下: 一 简介 本应用实现给网易邮箱发送邮件 二 代码 import smtplib import tkint...

详解Python中如何写控制台进度条的整理

详解Python中如何写控制台进度条的整理

本文实例讲述了Python显示进度条的方法,是Python程序设计中非常实用的技巧。分享给大家供大家参考。具体方法如下: 首先,进度条和一般的print区别在哪里呢? 答案就是print...

深入理解Django自定义信号(signals)

django中自定义了一些singals,用于监听一些操作,并发出通知 官方解释: Django 提供一个“信号分发器”,允许解耦的应用在框架的其它地方发生操作时会被通知到。 简单来说...