PyCharm搭建Spark开发环境实现第一个pyspark程序

yipeiwu_com6年前Python基础

一, PyCharm搭建Spark开发环境

Windows7, Java1.8.0_74, Scala 2.12.6, Spark 2.2.1, Hadoop2.7.6

通常情况下,Spark开发是基于Linux集群的,但这里作为初学者并且囊中羞涩,还是在windows环境下先学习吧。

参照这个配置本地的Spark环境。

之后就是配置PyCharm用来开发Spark。本人在这里浪费了不少时间,因为百度出来的无非就以下两种方式:

1.在程序中设置环境变量

import os
import sys

os.environ['SPARK_HOME'] = 'C:\xxx\spark-2.2.1-bin-hadoop2.7'
sys.path.append('C:\xxx\spark-2.2.1-bin-hadoop2.7\python')

2.在Edit Configuration中添加环境变量

不过还是没有解决程序中代码自动补全。

想了半天,观察到spark提供的pyspark很像单独的安装包,应该可以考虑将pyspark包放到python的安装目录下,这样也就自动添加到之前所设置的pythonpath里了,应该就能实现pyspark的代码补全提示。

将spark下的pyspark包放到python路径下(注意,不是spark下的python!)

最后,实现了pyspark代码补全功能。

二.第一个pyspark程序

作为小白,只能先简单用下python+pyspark了。

数据:Air Quality in Madrid (2001-2018)

需求:根据历史数据统计出每个月平均指标值

import os
import re
from pyspark.sql import SparkSession

if __name__ == "__main__":

 spark = SparkSession.builder.getOrCreate()
 df_array = []
 years = []
 air_quality_data_folder = "C:/xxx/spark/air-quality-madrid/csvs_per_year"
 for file in os.listdir(air_quality_data_folder):
  if '2018' not in file:
   year = re.findall("\d{4}", file)
   years.append(year[0])
   file_path = os.path.join(air_quality_data_folder, file)
   df = spark.read.csv(file_path, header="true")
   # print(df.columns)
   df1 = df.withColumn('yyyymm', df['date'].substr(0, 7))
   df_final = df1.filter(df1['yyyymm'].substr(0, 4) == year[0]).groupBy(df1['yyyymm']).agg({'PM10': 'avg'})
   df_array.append(df_final)

 pm10_months = [0] * 12
 # print(range(12))
 for df in df_array:
  for i in range(12):
   rows = df.filter(df['yyyymm'].contains('-'+str(i+1).zfill(2))).first()
   # print(rows[1])
   pm10_months[i] += (rows[1]/12)

 years.sort()
 print(years[0] + ' - ' + years[len(years)-1] + '年,每月平均PM10统计')
 m_index = 1
 for data in pm10_months:
  print(str(m_index).zfill(2) + '月份: ' + '||' * round(data))
  m_index += 1

运行结果:

- 2017年,每月平均PM10统计
01月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
02月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
03月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
04月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
05月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
06月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
07月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
08月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
09月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12月份: ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

由以上统计结果,可以看出4月份的PM10最低。

Done!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python常用内置函数总结

一、数学相关 1、绝对值:abs(-1) 2、最大最小值:max([1,2,3])、min([1,2,3]) 3、序列长度:len('abc')、len([1,2,3])、len((1,...

Python中的hypot()方法使用简介

 hypot()方法返回的欧几里德范数 sqrt(x*x + y*y). 语法 以下是hypot()方法的语法: hypot(x, y) 注意:此函数是无法直接访问的...

Python中使用Beautiful Soup库的超详细教程

Python中使用Beautiful Soup库的超详细教程

1. Beautiful Soup的简介 简单来说,Beautiful Soup是python的一个库,最主要的功能是从网页抓取数据。官方解释如下:    ...

Python中你应该知道的一些内置函数

Python中你应该知道的一些内置函数

前言 python内置了一些非常巧妙而且强大的内置函数,对初学者来说,一般不怎么用到,我也是用了一段时间python之后才发现,哇还有这么好的函数,这个函数都是经典的而且经过严格测试的,...

python中使用sys模板和logging模块获取行号和函数名的方法

对于python,这几天一直有两个问题在困扰我:1.python中没办法直接取得当前的行号和函数名。这是有人在论坛里提出的问题,底下一群人只是在猜测python为什么不像__file__...